scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Investigation of rheological behavior of MWCNT (COOH-functionalized)/MgO - Engine oil hybrid nanofluids and modelling the results with artificial neural networks

TL;DR: In this article, a study on the rheological behavior of oil-based hybrid nanofluids that has been evaluated in the volume fraction, temperature and various shear rates is presented.
About: This article is published in Journal of Molecular Liquids.The article was published on 2017-09-01. It has received 157 citations till now. The article focuses on the topics: Nanofluid & Viscosity.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors seek the attention of young scholars and experts working in the field of heat transfer by discussing the applications and challenges of hybrid nanofluids with a concise discussion on its history, synthesis techniques, thermophysical properties, research gaps, future directions, current status, and the leading groups, organizations and countries around the world.

312 citations

Journal ArticleDOI
TL;DR: In this article, the performance of solar energy systems is subject to the type of the working fluid that they use for solar energy conversion and transportation, and the importance, fabrication methods and characteristics of hybrid nanofluids as well as their implications on performance parameters of solar systems have been discussed.

239 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the recent advances in the preparation methods and thermophysical properties measurements of oil-based nanofluids, including thermal conductivity, viscosity, density, and specific heat.

161 citations

Journal ArticleDOI
TL;DR: In this paper, an artificial neural network (MLP) was used to predict the viscosity in terms of temperature, solid volume fraction and shear stress, which showed more accurate results in comparison with correlation results.
Abstract: In this article, rheological behavior of TiO2-MWCNT (45–55%)/10w40 hybrid nano-oil was studied experimentally. The nano- oils were tested at temperature ranges of 5–55 °C and in shear rates up to 11,997 s −1 . With respect to viscosity, shear stress and shear rate variations it was cleared that either of the base oil and nano-oil were non-Newtonian fluids. New equations which were based on thickness of the fluid were presented for different temperature values, R-squared values were between 0.9221 and 0.9998 (the precise of correlation changes depend on temperature). Also to predict the nano-oil behavior, neural network method was utilized. an artificial neural network (MLP type) were used to predict the viscosity in terms of temperature, solid volume fraction and shear stress. to compare the prediction precise of neural network and correlation the results of these two were compared with together. ANN showed more accurate results in comparison with correlation results. R 2 and (MSE) were 0.9979 and 0.000016 respectively for the ANN.

160 citations

Journal ArticleDOI
TL;DR: Hybrid-nanofluids as mentioned in this paper is a new fluid produced by dispersing two dissimilar types of nano-particles into the base fluid, which can be used to improve heat transfer performance.

158 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a review summarizes recent researches on synthesis, thermophysical properties, heat transfer and pressure drop characteristics, possible applications and challenges of hybrid nanofluids, and showed that proper hybridization may make the hybrid nanoparticles very promising for heat transfer enhancement, however, lot of research works are still needed in the fields of preparation and stability, characterization and applications to overcome the challenges.
Abstract: Researches on the nanofluids have been increased very rapidly over the past decade. In spite of some inconsistency in the reported results and insufficient understanding of the mechanism of the heat transfer in nanofluids, it has been emerged as a promising heat transfer fluid. In the continuation of nanofluids research, the researchers have also tried to use hybrid nanofluid recently, which is engineered by suspending dissimilar nanoparticles either in mixture or composite form. The idea of using hybrid nanofluids is to further improvement of heat transfer and pressure drop characteristics by trade-off between advantages and disadvantages of individual suspension, attributed to good aspect ratio, better thermal network and synergistic effect of nanomaterials. This review summarizes recent researches on synthesis, thermophysical properties, heat transfer and pressure drop characteristics, possible applications and challenges of hybrid nanofluids. Review showed that proper hybridization may make the hybrid nanofluids very promising for heat transfer enhancement, however, lot of research works is still needed in the fields of preparation and stability, characterization and applications to overcome the challenges.

846 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of thermal radiation on magnetohydrodynamics nanofluid flow between two horizontal rotating plates is studied and the significant effects of Brownian motion and thermophoresis have been included in the model of Nanofluide.

700 citations

Journal ArticleDOI
01 Oct 2014-Energy
TL;DR: In this paper, the influence of an external magnetic field on ferrofluid flow and heat transfer in a semi annulus enclosure with sinusoidal hot wall is investigated and the governing equations which are derived by considering the both effects of FHD and MHD (Magnetohydrodynamic) are solved via CVFEM (Control Volume based Finite Element Method).

393 citations

Journal ArticleDOI
TL;DR: In this article, the synthesis of hybrid nanoparticles, preparation of hybrid nanofluids, thermal properties, heat transfer, friction factor and the available Nusselt number and friction factor correlations are discussed.
Abstract: In the past decade, research on nanofluids has been increased rapidly and reports reveal that nanofluids are beneficial heat transfer fluids for engineering applications. The heat transfer enhancement of nanofluids is primarily dependent on thermal conductivity of nanoparticles, particle volume concentrations and mass flow rates. Under constant particle volume concentrations and flow rates, the heat transfer enhancement only depends on the thermal conductivity of the nanoparticles. The thermal conductivity of nanoparticles may be altered or changed by preparing hybrid (composite) nanoparticles. Hybrid nanoparticles are defined as nanoparticles composed by two or more different materials of nanometer size. The fluids prepared with hybrid nanoparticles are known as hybrid nanofluids. The motivation for the preparation of hybrid nanofluids is to obtain further heat transfer enhancement with augmented thermal conductivity of these nanofluids. This review covers the synthesis of hybrid nanoparticles, preparation of hybrid nanofluids, thermal properties, heat transfer, friction factor and the available Nusselt number and friction factor correlations. The review also demonstrates that hybrid nanofluids are more effective heat transfer fluids than single nanoparticles based nanofluids or conventional fluids. Notwithstanding, full understanding of the mechanisms associated with heat transfer enhancement of hybrid nanofluids is still lacking and, consequently it is required a considerable research effort in this area.

365 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide a brief review of researches on nanofluid flow and heat transfer via semi-analytical and numerical methods and show that the Nusselt number is an increasing function of nanoparticle volume fraction.
Abstract: The use of additives in the base fluid like water or ethylene glycol is one of the techniques applied to augment the heat transfer. Newly an innovative nanometer sized particles have been dispersed in the base fluid in heat transfer fluids. The fluids containing the solid nanometer size particle dispersion are called ‘nanofluids’. Two main categories were discussed in detail as the single-phase modeling which the combination of nanoparticle and base fluid is considered as a single-phase mixture with steady properties and the two-phase modeling in which the nanoparticle properties and behaviors are considered separately from the base fluid properties and behaviors. Both single phase and two phase models have been presented in this paper. This paper intends to provide a brief review of researches on nanofluid flow and heat transfer via semi analytical and numerical methods. It was also found that Nusselt number is an increasing function of nanoparticle volume fraction, Rayleigh number and Reynolds number, while it is a decreasing function of Hartmann number.

308 citations

Related Papers (5)