scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Investigation on Convective Heat Transfer and Flow Features of Nanofluids

01 Feb 2003-Journal of Heat Transfer-transactions of The Asme (American Society of Mechanical Engineers)-Vol. 125, Iss: 1, pp 151-155
TL;DR: In this article, an innovative new class of heat transfer fluids can be engineered by suspending metallic nanoparticles in conventional heat-transfer fluids, which are expected to exhibit high thermal conductivities compared to those of currently used heat transfer fluid, and they represent the best hope for enhancing heat transfer.
Abstract: Low thermal conductivity is a primary limitation in the development of energy-efficient heat transfer fluids that are required in many industrial applications. In this paper we propose that an innovative new class of heat transfer fluids can be engineered by suspending metallic nanoparticles in conventional heat transfer fluids. The resulting {open_quotes}nanofluids{close_quotes} are expected to exhibit high thermal conductivities compared to those of currently used heat transfer fluids, and they represent the best hope for enhancement of heat transfer. The results of a theoretical study of the thermal conductivity of nanofluids with copper nanophase materials are presented, the potential benefits of the fluids are estimated, and it is shown that one of the benefits of nanofluids will be dramatic reductions in heat exchanger pumping power.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, an experimental work on the effect of ultrasonication on thermal conductivity of aqueous nanofluids containing Fe 3 O 4 and carbon nanotubes nanoparticles emulsified and dispersed using gum arabic (GA) and tetramethylammonium hydroxide (TMAH) was performed.

93 citations

Journal ArticleDOI
TL;DR: An analysis was performed to study the effect of uniform transpiration velocity on free convection boundary-layer flow of a non-Newtonian fluid over a permeable vertical cone embedded in a porous medium saturated with a nanofluid.
Abstract: An analysis was performed to study the effect of uniform transpiration velocity on free convection boundary-layer flow of a non-Newtonian fluid over a permeable vertical cone embedded in a porous medium saturated with a nanofluid. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis. The governing partial differential equations are transformed into a set of non-similar equations and solved numerically by an efficient implicit, iterative, finite-difference method. Comparisons with previously published work are performed and excellent agreement is obtained. A parametric study of the physical parameters is conducted and a representative set of numerical results for the velocity, temperature, and volume fraction profiles as well as the local Nusselt and Sherwood numbers is illustrated graphically to show interesting features of the solutions.

93 citations

Journal ArticleDOI
TL;DR: In this article, a detailed analysis is given for the mixed convection flow of a nanofluid over a stretching surface with uniform free stream in the presence of both nanoparticles and gyrotactic microorganisms.

93 citations

01 Jan 2005
TL;DR: In this paper, the problem of laminar forced convection flow of nanofluids has been thoroughly investigated for two particular geometrical configurations, namely a uniformly heated tube and a system of parallel, coaxial and heated disks.
Abstract: The problem of laminar forced convection flow of nanofluids has been thoroughly investigated for two particular geometrical configurations, namely a uniformly heated tube and a system of parallel, coaxial and heated disks. Numerical results, as obtained for water-γAl 2 O 3 and Ethylene Glycol-γAl 2 O 3 mixtures, have clearly shown that the inclusion of nanoparticles into the base fluids has produced a considerable augmentation of the heat transfer coefficient that clearly increases with an increase of the particle concentration. However, the presence of such particles has also induced drastic effects on the wall shear stress that increases appreciably with the particle loading. Among the mixtures studied, the Ethylene Glycol -γAl 2 O 3 nanofluid appears to offer a better heat transfer enhancement than water- γ/Al 2 O 3 ; it is also the one that has induced more pronounced adverse effects on the wall shear stress. For the case of tube flow, results have also shown that, in general, the heat transfer enhancement also increases considerably with an augmentation of the flow Reynolds number. Correlations have been provided for computing the Nusselt number for the nanofluids considered in terms of the Reynolds and the Prandtl numbers and this for both the thermal boundary conditions considered

93 citations

Journal ArticleDOI
TL;DR: In this article, an experimental study is carried out to examine the cooling performance of a minichannel heat sink using water-based suspensions of alumina nanoparticles (nanofluid), and/or microencapsulated phase change material (MEPCM) particles in terms of the averaged Nusselt number Nu ¯ itd, the wall temperature control effectiveness E T w, and the averaged thermal resistance control effectiveness e R avg for the relevant parameters in the following ranges: the Reynolds number, Re ǫ = −133-1515; the mass fractions of the

93 citations

References
More filters
Book
01 Jan 1985
TL;DR: In this article, the physical concepts and methodologies of heat and mass transfer are explained for advanced undergraduate engineering majors, using a systematic method for problem solving and discusses the relationship of heat transfer to many important practical applications through examples and problems.
Abstract: This book, designed for advanced undergraduate engineering majors, explains the physical concepts and methodologies of heat and mass transfer. It uses a systematic method for problem solving and discusses the relationship of heat and mass transfer to many important practical applications through examples and problems. A and significant contribution is the extensive use of the First Law of thermodynamics.

4,113 citations

Journal ArticleDOI
TL;DR: In this article, the authors used a Brookfield rotating viscometer to measure the viscosities of the dispersed fluids with γ-alumina (Al2O3) and titanium dioxide (TiO2) particles at a 10% volume concentration.
Abstract: Turbulent friction and heat transfer behaviors of dispersed fluids (i.e., uttrafine metallic oxide particles suspended in water) in a circular pipe were investigated experimentally. Viscosity measurements were also conducted using a Brookfield rotating viscometer. Two different metallic oxide particles, γ-alumina (Al2O3) and titanium dioxide (TiO2), with mean diameters of 13 and 27 nm, respectively, were used as suspended particles. The Reynolds and Prandtl numbers varied in the ranges l04-I05 and 6.5-12.3, respectively. The viscosities of the dispersed fluids with γ-Al2O3 and TiO2 particles at a 10% volume concentration were approximately 200 and 3 times greater than that of water, respectively. These viscosity results were significantly larger than the predictions from the classical theory of suspension rheology. Darcy friction factors for the dispersed fluids of the volume concentration ranging from 1% to 3% coincided well with Kays' correlation for turbulent flow of a single-phase fluid. The Nusselt n...

3,730 citations

Journal ArticleDOI

3,019 citations


"Investigation on Convective Heat Tr..." refers background in this paper

  • ...Hamilton and Crasser (1962) have developed a more elaborate model for the effective thermal conductivity of twocomponent mixtures as a function of the conductivity of the pure materials, the composition of the mixture, and the shape of the dispersed particles....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a transient hot-wire method was used to measure the thermal conductivity of a small amount of nanoparticles and the experimental results showed that these nanoparticles have substantially higher thermal conductivities than the same liquids without nanoparticles.
Abstract: Oxide nanofluids were produced and their thermal conductivities were measured by a transient hot-wire method. The experimental results show that these nanofluids, containing a small amount of nanoparticles, have substantially higher thermal conductivities than the same liquids without nanoparticles. Comparisons between experiments and the Hamilton and Crosser model show that the model can predict the thermal conductivity of nanofluids containing large agglomerated Al{sub 2}O{sub 3} particles. However, the model appears to be inadequate for nanofluids containing CuO particles. This suggests that not only particle shape but size is considered to be dominant in enhancing the thermal conductivity of nanofluids.

2,811 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed two different approaches for deriving heat transfer correlation of the nanofluid, and investigated the mechanism of heat transfer enhancement of the nano-fluid.

2,355 citations