scispace - formally typeset
Journal ArticleDOI

Investigation on Convective Heat Transfer and Flow Features of Nanofluids

Reads0
Chats0
TLDR
In this article, an innovative new class of heat transfer fluids can be engineered by suspending metallic nanoparticles in conventional heat-transfer fluids, which are expected to exhibit high thermal conductivities compared to those of currently used heat transfer fluid, and they represent the best hope for enhancing heat transfer.
Abstract
Low thermal conductivity is a primary limitation in the development of energy-efficient heat transfer fluids that are required in many industrial applications. In this paper we propose that an innovative new class of heat transfer fluids can be engineered by suspending metallic nanoparticles in conventional heat transfer fluids. The resulting {open_quotes}nanofluids{close_quotes} are expected to exhibit high thermal conductivities compared to those of currently used heat transfer fluids, and they represent the best hope for enhancement of heat transfer. The results of a theoretical study of the thermal conductivity of nanofluids with copper nanophase materials are presented, the potential benefits of the fluids are estimated, and it is shown that one of the benefits of nanofluids will be dramatic reductions in heat exchanger pumping power.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids)

TL;DR: In this paper, the effects of concentration of carbon nanotubes and temperature on effective thermal conductivity were investigated, and it was found that effective thermal conduction increased with increasing concentration of the carbon-nanotubes, and the dependence was nonlinear even at very low concentrations.
Journal ArticleDOI

Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes

TL;DR: The turbulent convective heat transfer behavior of alumina (Al 2 O 3 ) and zirconia (ZrO 2 ) nanoparticle dispersions in water is investigated experimentally in a flow loop with a horizontal tube test section at various flow rates (9000
Journal ArticleDOI

Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids

TL;DR: In this paper, the convective heat transfer coefficient and friction factor for fully developed turbulent flow of MWCNT-Fe3O4/water hybrid nanofluids flowing through a uniformly-heated-atconstant-heat-flux circular tube are estimated.
Journal ArticleDOI

Natural convection cooling of a localised heat source at the bottom of a nanofluid-filled enclosure

TL;DR: In this paper, the authors present a numerical study of the cooling performance of a heat source embedded on the bottom wall of an enclosure filled with nanofluids, where the top and vertical walls of the enclosure are maintained at a relatively low temperature.
Journal ArticleDOI

A critical review of traditional and emerging techniques and fluids for electronics cooling

TL;DR: In this paper, a critical review of traditional and emerging cooling methods as well as coolants for electronics is provided, summarizing traditional coolants, heat transfer properties and performances of potential new coolants such as nanofluids are also reviewed and analyzed.
References
More filters
Book

Introduction to Heat Transfer

TL;DR: In this article, the physical concepts and methodologies of heat and mass transfer are explained for advanced undergraduate engineering majors, using a systematic method for problem solving and discusses the relationship of heat transfer to many important practical applications through examples and problems.
Journal ArticleDOI

Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles

TL;DR: In this article, the authors used a Brookfield rotating viscometer to measure the viscosities of the dispersed fluids with γ-alumina (Al2O3) and titanium dioxide (TiO2) particles at a 10% volume concentration.
Journal ArticleDOI

Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles

TL;DR: In this paper, a transient hot-wire method was used to measure the thermal conductivity of a small amount of nanoparticles and the experimental results showed that these nanoparticles have substantially higher thermal conductivities than the same liquids without nanoparticles.
Journal ArticleDOI

Conceptions for heat transfer correlation of nanofluids

TL;DR: In this article, the authors proposed two different approaches for deriving heat transfer correlation of the nanofluid, and investigated the mechanism of heat transfer enhancement of the nano-fluid.
Related Papers (5)