scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Investigation on Convective Heat Transfer and Flow Features of Nanofluids

01 Feb 2003-Journal of Heat Transfer-transactions of The Asme (American Society of Mechanical Engineers)-Vol. 125, Iss: 1, pp 151-155
TL;DR: In this article, an innovative new class of heat transfer fluids can be engineered by suspending metallic nanoparticles in conventional heat-transfer fluids, which are expected to exhibit high thermal conductivities compared to those of currently used heat transfer fluid, and they represent the best hope for enhancing heat transfer.
Abstract: Low thermal conductivity is a primary limitation in the development of energy-efficient heat transfer fluids that are required in many industrial applications. In this paper we propose that an innovative new class of heat transfer fluids can be engineered by suspending metallic nanoparticles in conventional heat transfer fluids. The resulting {open_quotes}nanofluids{close_quotes} are expected to exhibit high thermal conductivities compared to those of currently used heat transfer fluids, and they represent the best hope for enhancement of heat transfer. The results of a theoretical study of the thermal conductivity of nanofluids with copper nanophase materials are presented, the potential benefits of the fluids are estimated, and it is shown that one of the benefits of nanofluids will be dramatic reductions in heat exchanger pumping power.

Content maybe subject to copyright    Report

Citations
More filters
19 May 2009

76 citations


Cites background from "Investigation on Convective Heat Tr..."

  • ...There are relatively few studies involved in describing fluid flow and convective heat transfer performance of the nanofluids [7, 8]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the effective thermal conductivity of Ar-Cu nanofluid in shear field is calculated by equilibrium molecular dynamics (EMD) simulation using Green-Kubo formula.

76 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the phenomenon of heat and mass transfer in 3D radiative flow of hybrid nanofluid over a rotational disk and found that the rate of heat transfer is proportional to Brinkman number, magnetic effect and concentration of nanoparticles.
Abstract: In this research, the phenomenon of heat and mass transfer in 3D radiative flow of hybrid nanofluid over a rotational disk is investigated. Nanoparticles of Al2O3 and Cu are being used with water (H2O) as base fluid. The mathematical flow model in terms of PDEs is constructed by considering the heat transport mechanism due to Joule heating and viscous dissipation. This set of PDEs is converted into a system of ODEs by introducing the proper similarity transformations, which is then solved with the computational strength of Lobatto IIIA method. Demonstrations of graphical and numerical data are offered to examine the variation of velocity and thermal field against various physical constraints. The variable trend of heat transfer rate and skin friction coefficient through numerical data are also investigated. It is found that rate of heat transfer is proportional to Brinkman number, magnetic effect and concentration of nanoparticles. Achieved accuracy in term of relative error upto the level of 1e-14 shows the reliability and worth of solution methodology.

76 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of nanofluids on the closed loop pulsating heat pipe (CLPHP) performance using copper and silver colloidal nanophluids is described.

76 citations

Journal ArticleDOI
TL;DR: In this article, the study on free convection of a hybrid nanoliquid confined within a contrariwise T-shaped enclosure saturated by two porous media with different material and structure is presented.
Abstract: The article treats the study on free convection of a hybrid nanoliquid confined within contrariwise T-shaped enclosure saturated by two porous media with different material and structure. N...

76 citations

References
More filters
Book
01 Jan 1985
TL;DR: In this article, the physical concepts and methodologies of heat and mass transfer are explained for advanced undergraduate engineering majors, using a systematic method for problem solving and discusses the relationship of heat transfer to many important practical applications through examples and problems.
Abstract: This book, designed for advanced undergraduate engineering majors, explains the physical concepts and methodologies of heat and mass transfer. It uses a systematic method for problem solving and discusses the relationship of heat and mass transfer to many important practical applications through examples and problems. A and significant contribution is the extensive use of the First Law of thermodynamics.

4,113 citations

Journal ArticleDOI
TL;DR: In this article, the authors used a Brookfield rotating viscometer to measure the viscosities of the dispersed fluids with γ-alumina (Al2O3) and titanium dioxide (TiO2) particles at a 10% volume concentration.
Abstract: Turbulent friction and heat transfer behaviors of dispersed fluids (i.e., uttrafine metallic oxide particles suspended in water) in a circular pipe were investigated experimentally. Viscosity measurements were also conducted using a Brookfield rotating viscometer. Two different metallic oxide particles, γ-alumina (Al2O3) and titanium dioxide (TiO2), with mean diameters of 13 and 27 nm, respectively, were used as suspended particles. The Reynolds and Prandtl numbers varied in the ranges l04-I05 and 6.5-12.3, respectively. The viscosities of the dispersed fluids with γ-Al2O3 and TiO2 particles at a 10% volume concentration were approximately 200 and 3 times greater than that of water, respectively. These viscosity results were significantly larger than the predictions from the classical theory of suspension rheology. Darcy friction factors for the dispersed fluids of the volume concentration ranging from 1% to 3% coincided well with Kays' correlation for turbulent flow of a single-phase fluid. The Nusselt n...

3,730 citations

Journal ArticleDOI

3,019 citations


"Investigation on Convective Heat Tr..." refers background in this paper

  • ...Hamilton and Crasser (1962) have developed a more elaborate model for the effective thermal conductivity of twocomponent mixtures as a function of the conductivity of the pure materials, the composition of the mixture, and the shape of the dispersed particles....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a transient hot-wire method was used to measure the thermal conductivity of a small amount of nanoparticles and the experimental results showed that these nanoparticles have substantially higher thermal conductivities than the same liquids without nanoparticles.
Abstract: Oxide nanofluids were produced and their thermal conductivities were measured by a transient hot-wire method. The experimental results show that these nanofluids, containing a small amount of nanoparticles, have substantially higher thermal conductivities than the same liquids without nanoparticles. Comparisons between experiments and the Hamilton and Crosser model show that the model can predict the thermal conductivity of nanofluids containing large agglomerated Al{sub 2}O{sub 3} particles. However, the model appears to be inadequate for nanofluids containing CuO particles. This suggests that not only particle shape but size is considered to be dominant in enhancing the thermal conductivity of nanofluids.

2,811 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed two different approaches for deriving heat transfer correlation of the nanofluid, and investigated the mechanism of heat transfer enhancement of the nano-fluid.

2,355 citations