scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Investigation on Convective Heat Transfer and Flow Features of Nanofluids

01 Feb 2003-Journal of Heat Transfer-transactions of The Asme (American Society of Mechanical Engineers)-Vol. 125, Iss: 1, pp 151-155
TL;DR: In this article, an innovative new class of heat transfer fluids can be engineered by suspending metallic nanoparticles in conventional heat-transfer fluids, which are expected to exhibit high thermal conductivities compared to those of currently used heat transfer fluid, and they represent the best hope for enhancing heat transfer.
Abstract: Low thermal conductivity is a primary limitation in the development of energy-efficient heat transfer fluids that are required in many industrial applications. In this paper we propose that an innovative new class of heat transfer fluids can be engineered by suspending metallic nanoparticles in conventional heat transfer fluids. The resulting {open_quotes}nanofluids{close_quotes} are expected to exhibit high thermal conductivities compared to those of currently used heat transfer fluids, and they represent the best hope for enhancement of heat transfer. The results of a theoretical study of the thermal conductivity of nanofluids with copper nanophase materials are presented, the potential benefits of the fluids are estimated, and it is shown that one of the benefits of nanofluids will be dramatic reductions in heat exchanger pumping power.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the Nusselt number prediction for nanofluids has been validated with existing well established correlations, and it is found that smaller diameter nanoparticles have higher viscosity.

379 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present new correlations for the convective heat transfer and the friction factor developed from the experiments of nanoparticles comprised of aluminum oxide, copper oxide and silicon dioxide dispersed in 60% ethylene glycol and 40% water by mass.

378 citations

Journal ArticleDOI
TL;DR: In this paper, different viscosity and thermal conductivity models are used to evaluate heat transfer enhancement in horizontal annuli using variable properties of Al2O3-water nanofluid.

377 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a critical analysis of the experimental data in terms of the potential mechanisms and show that, by accounting for linear particle aggregation, the well established effective medium theories for composite materials are capable of explaining the vast majority of the reported data without resorting to novel mechanisms such as Brownian motion induced nanoconvection, liquid layering at the interface, or near-field radiation.
Abstract: Over the last decade nanofluids (colloidal suspensions of solid nanoparticles) sparked excitement as well as controversy In particular, a number of researches reported dramatic increases of thermal conductivity with small nanoparticle loading, while others showed moderate increases consistent with the effective medium theories on well-dispersed conductive spheres Accordingly, the mechanism of thermal conductivity enhancement is a hotly debated topic We present a critical analysis of the experimental data in terms of the potential mechanisms and show that, by accounting for linear particle aggregation, the well established effective medium theories for composite materials are capable of explaining the vast majority of the reported data without resorting to novel mechanisms such as Brownian motion induced nanoconvection, liquid layering at the interface, or near-field radiation However, particle aggregation required to significantly enhance thermal conductivity, also increases fluid viscosity rendering the benefit of nanofluids to flow based cooling applications questionable

374 citations

Journal ArticleDOI
TL;DR: In this article, stable homogeneous graphene nanoplatelet (GNP) nanofluids were prepared without any surfactant by high-power ultrasonic (probe) dispersion of GNPs in distilled water.
Abstract: In the present study, stable homogeneous graphene nanoplatelet (GNP) nanofluids were prepared without any surfactant by high-power ultrasonic (probe) dispersion of GNPs in distilled water. The concentrations of nanofluids were maintained at 0.025, 0.05, 0.075, and 0.1 wt.% for three different specific surface areas of 300, 500, and 750 m2/g. Transmission electron microscopy image shows that the suspensions are homogeneous and most of the materials have been well dispersed. The stability of nanofluid was investigated using a UV-visible spectrophotometer in a time span of 600 h, and zeta potential after dispersion had been investigated to elucidate its role on dispersion characteristics. The rheological properties of GNP nanofluids approach Newtonian and non-Newtonian behaviors where viscosity decreases linearly with the rise of temperature. The thermal conductivity results show that the dispersed nanoparticles can always enhance the thermal conductivity of the base fluid, and the highest enhancement was obtained to be 27.64% in the concentration of 0.1 wt.% of GNPs with a specific surface area of 750 m2/g. Electrical conductivity of the GNP nanofluids shows a significant enhancement by dispersion of GNPs in distilled water. This novel type of nanofluids shows outstanding potential for replacements as advanced heat transfer fluids in medium temperature applications including solar collectors and heat exchanger systems.

371 citations

References
More filters
Book
01 Jan 1985
TL;DR: In this article, the physical concepts and methodologies of heat and mass transfer are explained for advanced undergraduate engineering majors, using a systematic method for problem solving and discusses the relationship of heat transfer to many important practical applications through examples and problems.
Abstract: This book, designed for advanced undergraduate engineering majors, explains the physical concepts and methodologies of heat and mass transfer. It uses a systematic method for problem solving and discusses the relationship of heat and mass transfer to many important practical applications through examples and problems. A and significant contribution is the extensive use of the First Law of thermodynamics.

4,113 citations

Journal ArticleDOI
TL;DR: In this article, the authors used a Brookfield rotating viscometer to measure the viscosities of the dispersed fluids with γ-alumina (Al2O3) and titanium dioxide (TiO2) particles at a 10% volume concentration.
Abstract: Turbulent friction and heat transfer behaviors of dispersed fluids (i.e., uttrafine metallic oxide particles suspended in water) in a circular pipe were investigated experimentally. Viscosity measurements were also conducted using a Brookfield rotating viscometer. Two different metallic oxide particles, γ-alumina (Al2O3) and titanium dioxide (TiO2), with mean diameters of 13 and 27 nm, respectively, were used as suspended particles. The Reynolds and Prandtl numbers varied in the ranges l04-I05 and 6.5-12.3, respectively. The viscosities of the dispersed fluids with γ-Al2O3 and TiO2 particles at a 10% volume concentration were approximately 200 and 3 times greater than that of water, respectively. These viscosity results were significantly larger than the predictions from the classical theory of suspension rheology. Darcy friction factors for the dispersed fluids of the volume concentration ranging from 1% to 3% coincided well with Kays' correlation for turbulent flow of a single-phase fluid. The Nusselt n...

3,730 citations

Journal ArticleDOI

3,019 citations


"Investigation on Convective Heat Tr..." refers background in this paper

  • ...Hamilton and Crasser (1962) have developed a more elaborate model for the effective thermal conductivity of twocomponent mixtures as a function of the conductivity of the pure materials, the composition of the mixture, and the shape of the dispersed particles....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a transient hot-wire method was used to measure the thermal conductivity of a small amount of nanoparticles and the experimental results showed that these nanoparticles have substantially higher thermal conductivities than the same liquids without nanoparticles.
Abstract: Oxide nanofluids were produced and their thermal conductivities were measured by a transient hot-wire method. The experimental results show that these nanofluids, containing a small amount of nanoparticles, have substantially higher thermal conductivities than the same liquids without nanoparticles. Comparisons between experiments and the Hamilton and Crosser model show that the model can predict the thermal conductivity of nanofluids containing large agglomerated Al{sub 2}O{sub 3} particles. However, the model appears to be inadequate for nanofluids containing CuO particles. This suggests that not only particle shape but size is considered to be dominant in enhancing the thermal conductivity of nanofluids.

2,811 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed two different approaches for deriving heat transfer correlation of the nanofluid, and investigated the mechanism of heat transfer enhancement of the nano-fluid.

2,355 citations