scispace - formally typeset
Open Access

Investigations of sulfur-silver interactions and mass transport on silver and gold surfaces

Reads0
Chats0
TLDR
In this article, the authors present the CHARACTERISTICS of SULFUR ATOMS ADSORBED ON Ag(100), Ag(110), and Ag(111) as PROBED with SCANNING TUNNELING MICROSCOPY: EXPERIMENT AND THEORY.
Abstract
.................................................................................................................................. vi CHAPTER 1. GENERAL INTRODUCTION ............................................................................... 1 1. Motivation ............................................................................................................................... 1 1.1 Coinage metals ................................................................................................................ 2 1.2 Metal-sulfur complexes ..................................................................................................... 2 2. Experimental details and methods........................................................................................... 3 2.1 Equipment .......................................................................................................................... 3 2.2 Sample materials................................................................................................................ 6 2.3 Data analysis ...................................................................................................................... 9 3. Dissertation organization....................................................................................................... 10 4. References ............................................................................................................................. 11 CHAPTER 2. CHARACTERISTICS OF SULFUR ATOMS ADSORBED ON Ag(100), Ag(110), AND Ag(111) AS PROBED WITH SCANNING TUNNELING MICROSCOPY: EXPERIMENT AND THEORY .................................................................................................. 17 1. Abstract ................................................................................................................................. 17 2. Introduction ........................................................................................................................... 18 3. Methods ................................................................................................................................. 20 3.1 Experimental details ........................................................................................................ 20 3.2 Computational methodology ........................................................................................... 21 4. Experimental results .............................................................................................................. 27 4.1 S/Ag(100): STM results ................................................................................................... 27 4.2 S/Ag(110): STM results ................................................................................................... 30 5. DFT results ............................................................................................................................ 31 5.1. S/Ag(100): DFT results .................................................................................................. 32 5.2. S/Ag(110): DFT results .................................................................................................. 37 5.3. S/Ag(111): DFT results .................................................................................................. 38 6. Discussion ............................................................................................................................. 39 7. Conclusions ........................................................................................................................... 43 8. References ............................................................................................................................. 44 9. Acknowledgements ............................................................................................................... 48 10. Appendix 1: Coverage dependence of S/Ag(100)............................................................... 49 11. Appendix 2: STM tunneling conditions .............................................................................. 57

read more

Citations
More filters

Shape- and size-specific chemistry of Ag nanostructures in catalytic ethylene epoxidation

TL;DR: In this article, shape and size controlled synthesis of Ag nanoparticles is used to show that silver nanocubes exhibit higher selectivity than nanowires and nanospheres for a given shape, larger particles offer improved selectivity.
DissertationDOI

Sulfur-induced structural motifs on copper and gold surfaces

Holly Walen
TL;DR: In this paper, the authors identify and analyze unique sulfur-induced structural motifs observed on the low-index surfaces of these two metals and seek out these structures in an effort to better understand the fundamental interactions between these metals and sulfur that lends to the stability and favorability of metal-sulfur complexes vs. chemisorbed atomic sulfur.
References
More filters
Journal ArticleDOI

Generalized Gradient Approximation Made Simple

TL;DR: A simple derivation of a simple GGA is presented, in which all parameters (other than those in LSD) are fundamental constants, and only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked.
Journal ArticleDOI

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.

TL;DR: An efficient scheme for calculating the Kohn-Sham ground state of metallic systems using pseudopotentials and a plane-wave basis set is presented and the application of Pulay's DIIS method to the iterative diagonalization of large matrices will be discussed.
Journal ArticleDOI

Projector augmented-wave method

TL;DR: An approach for electronic structure calculations is described that generalizes both the pseudopotential method and the linear augmented-plane-wave (LAPW) method in a natural way and can be used to treat first-row and transition-metal elements with affordable effort and provides access to the full wave function.
Journal ArticleDOI

Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals

TL;DR: In this paper, a simple formulation of a generalized gradient approximation for the exchange and correlation energy of electrons has been proposed by Perdew, Burke, and Ernzerhof (PBE), which improves the chemisorption energy of atoms and molecules on transition-metal surfaces.
Journal ArticleDOI

Van der Waals density functionals applied to solids

TL;DR: The van der Waals density functional (vdW-DF) is a promising approach for including dispersion in approximate density functional theory exchange-correlation functionals and has been demonstrated in the literature as discussed by the authors.
Related Papers (5)