scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Ion exchange membranes as separators in microbial fuel cells for bioenergy conversion: A comprehensive review

01 Dec 2013-Renewable & Sustainable Energy Reviews (Pergamon)-Vol. 28, pp 575-587
TL;DR: In this article, the authors provide an overview of several important membrane characteristics, which include membrane internal resistance, membrane biofouling, pH splitting, oxygen diffusion, and substrate loss across the membrane.
Abstract: The urgent need to address the twin problems of the modern world, energy insecurity caused by fossil fuel depletion and climate change caused by global warming from carbon dioxide emission and the greenhouse effect has led to among other things the emergence of fuel cell technology as a green energy technology that could generate cleaner and highly efficient energy. Microbial fuel cell (MFC), an emerging dual function, bioenergy conversion device, that not only treats wastewater but also generates electricity, has caught much attention of both fuel cell and bioenergy researchers. Until today, the commercialization of MFC has been restricted mainly due to its high cost and low power density. Many challenges still remain to be conquered, in order to improve the performance and commercialization of MFC. It is generally known that ion exchange membrane in MFC is one of the main factors that could significantly affect the cost and performance of MFC. This review provides an overview of several important membrane characteristics, which include membrane internal resistance, membrane biofouling, pH splitting, oxygen diffusion, and substrate loss across the membrane. The negative impact of these characteristics on MFC performance, are discussed. Moreover, this review concerns the types of membrane that have been applied in MFC systems, such as cation exchange membranes, anion exchange membranes, membraneless technology, polymer/composite membranes, and porous membranes. The future trend of membrane development for MFC applications is also discussed.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, an up-to-date perspective on the use of anion-exchange membranes in fuel cells, electrolysers, redox flow batteries, reverse electrodialysis cells, and bioelectrochemical systems (e.g. microbial fuel cells).
Abstract: This article provides an up-to-date perspective on the use of anion-exchange membranes in fuel cells, electrolysers, redox flow batteries, reverse electrodialysis cells, and bioelectrochemical systems (e.g. microbial fuel cells). The aim is to highlight key concepts, misconceptions, the current state-of-the-art, technological and scientific limitations, and the future challenges (research priorities) related to the use of anion-exchange membranes in these energy technologies. All the references that the authors deemed relevant, and were available on the web by the manuscript submission date (30th April 2014), are included.

1,526 citations

Journal ArticleDOI
TL;DR: Different treatment methods to treat the textile wastewater have been presented along with cost per unit volume of treated water, and the possible remedial measures to treat different types of effluent generated from each textile operation are recommended.

1,335 citations

Journal ArticleDOI
TL;DR: The development of the concept of microbial fuel cell into a wider range of derivative technologies, called bioelectrochemical systems, is described, introducing briefly microbial electrolysis cells, microbial desalination cells and microbial electrosynthesis cells.

1,180 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide an overall survey of the key technologies in hydrogen energy storage system, ranging from hydrogen production using both fossil fuels, biomass and electricity generated from renewable power sources, to hydrogen storage in both pressurised gas, liquefied and material-based methods, as well as associated electricity generation technologies using hydrogen.

535 citations

Journal ArticleDOI
TL;DR: In this paper, the development and advancements of electrode and membrane materials for increasing the microbial fuel cell performances in recent years have been discussed and reviewed and discussed the different categories of electrode (anode and cathode) materials with various structural, dimensional, compositions and integrations.

321 citations

References
More filters
Journal ArticleDOI
TL;DR: A review of the different materials and methods used to construct MFCs, techniques used to analyze system performance, and recommendations on what information to include in MFC studies and the most useful ways to present results are provided.
Abstract: Microbial fuel cell (MFC) research is a rapidly evolving field that lacks established terminology and methods for the analysis of system performance. This makes it difficult for researchers to compare devices on an equivalent basis. The construction and analysis of MFCs requires knowledge of different scientific and engineering fields, ranging from microbiology and electrochemistry to materials and environmental engineering. Describing MFC systems therefore involves an understanding of these different scientific and engineering principles. In this paper, we provide a review of the different materials and methods used to construct MFCs, techniques used to analyze system performance, and recommendations on what information to include in MFC studies and the most useful ways to present results.

5,024 citations

Journal ArticleDOI
TL;DR: Light scattering experiments revealed that the radius of gyration had a linear dependence on the molar mass of the aggregates, which suggests that the particles are in the form of rods or ribbons, or at least some elongated structure.
Abstract: Equivalent weight (EW) is the number of grams of dry Nafion per mole of sulfonic acid groups when the material is in the acid form. This is an average EW in the sense that the comonomer sequence distribution (that is usually unknown to the investigator and largely unreported) gives a distribution in m in this formula. EW can be ascertained by acid-base titration, by analysis of atomic sulfur, and by FT-IR spectroscopy. The relationship between EW and m is EW ) 100m + 446 so that, for example, the side chains are separated by around 14 CF2 units in a membrane of 1100 EW. Common at the time of this writing are Nafion 117 films. The designation “117” refers to a film having 1100 EW and a nominal thickness of 0.007 in., although 115 and 112 films have also been available. Early-reported studies involved 1200 EW samples as well as special experimental varieties, some being rather thin. The equivalent weight is related to the property more often seen in the field of conventional ion exchange resins, namely the ion exchange capacity (IEC), by the equation IEC ) 1000/EW. The mention of the molecular weight of high equivalent weight (EW > 1000 g‚mol-1) Nafion is almost absent in the literature, although the range 105-106 Da has been mentioned. As this polymer does not form true solutions, the common methods of light scattering and gel permeation chromatography cannot be used to determine molecular weight as well as the size and shape of isolated, truly dissolved molecules. Studies of the structure of this polymer in solvent (albeit not a true solution) will be mentioned in the scattering section of this review. It should be noted that Curtin et al. performed size exclusion chromatography determinations of the molecular weight distribution in Nafion aqueous dispersions after they were heated to high temperatures (230, 250, and 270 °C).1 Before heating, there was a high molecular weight shoulder on a bimodal distribution, due to molecular aggregates, but this shoulder disappeared upon heating, which indicated that the aggregates were disrupted. The peaks for the monomodal distribution for the heated samples were all located at molecular weights slightly higher than 105 g‚mol-1. Also, light scattering experiments revealed that the radius of gyration had a linear dependence on the molar mass of the aggregates, which suggests that the particles are in the form of rods or ribbons, or at least some elongated structure. Nafion ionomers are usually derived from the thermoplastic -SO2F precursor form that can be extruded into sheets of required thickness. Strong interactions between the ionic groups are an obstacle to melt processing. This precursor does not possess the clustered morphology that will be of great concern in this article but does possess Teflon-like crystallinity which persists when the sulfonyl fluoride form is converted to, for example, the K+ form by reacting it with KOH in water and DMSO. Thereafter, the -SO3H form is achieved by soaking the film in a sufficiently concentrated aqueous acid solution. Extrusion of the sulfonyl fluoride precursor can cause microstructural orientation in the machine direction, * Address correspondence to either author. Phone: 601-266-5595/ 4480. Fax: 601-266-5635. E-mail: Kenneth.Mauritz@usm.edu; RBMoore@usm.edu. 4535 Chem. Rev. 2004, 104, 4535−4585

4,130 citations

Journal ArticleDOI
TL;DR: An analysis based on available anode surface area and maximum bacterial growth rates suggests that mediatorless MFCs may have an upper order-of-magnitude limit in power density of 10(3) mW/m2.
Abstract: Microbial fuel cells (MFCs) are typically designed as a two-chamber system with the bacteria in the anode chamber separated from the cathode chamber by a polymeric proton exchange membrane (PEM). Most MFCs use aqueous cathodes where water is bubbled with air to provide dissolved oxygen to electrode. To increase energy output and reduce the cost of MFCs, we examined power generation in an air-cathode MFC containing carbon electrodes in the presence and absence of a polymeric proton exchange membrane (PEM). Bacteria present in domestic wastewater were used as the biocatalyst, and glucose and wastewater were tested as substrates. Power density was found to be much greater than typically reported for aqueous-cathode MFCs, reaching a maximum of 262 ± 10 mW/m2 (6.6 ± 0.3 mW/L; liquid volume) using glucose. Removing the PEM increased the maximum power density to 494 ± 21 mW/m2 (12.5 ± 0.5 mW/L). Coulombic efficiency was 40−55% with the PEM and 9−12% with the PEM removed, indicating substantial oxygen diffusion i...

1,833 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a new formula for calculating when fossil fuel reserves are likely to be depleted and developed an econometrics model to demonstrate the relationship between fossil fuel reserve and some main variables.

1,744 citations

Journal ArticleDOI
TL;DR: A novel microorganism is reported on, Rhodoferax ferrireducens, that can oxidize glucose to CO2 and quantitatively transfer electrons to graphite electrodes without the need for an electron-shuttling mediator, which results in stable, long-term power production.
Abstract: Abundant energy, stored primarily in the form of carbohydrates, can be found in waste biomass from agricultural, municipal and industrial sources as well as in dedicated energy crops, such as corn and other grains. Potential strategies for deriving useful forms of energy from carbohydrates include production of ethanol and conversion to hydrogen, but these approaches face technical and economic hurdles. An alternative strategy is direct conversion of sugars to electrical power. Existing transition metal-catalyzed fuel cells cannot be used to generate electric power from carbohydrates. Alternatively, biofuel cells in which whole cells or isolated redox enzymes catalyze the oxidation of the sugar have been developed, but their applicability has been limited by several factors, including (i) the need to add electron-shuttling compounds that mediate electron transfer from the cell to the anode, (ii) incomplete oxidation of the sugars and (iii) lack of long-term stability of the fuel cells. Here we report on a novel microorganism, Rhodoferax ferrireducens, that can oxidize glucose to CO(2) and quantitatively transfer electrons to graphite electrodes without the need for an electron-shuttling mediator. Growth is supported by energy derived from the electron transfer process itself and results in stable, long-term power production.

1,454 citations