scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Ionic-liquid materials for the electrochemical challenges of the future.

TL;DR: The goal in this review is to survey the recent key developments and issues within ionic-liquid research in these areas, and to generate interest in the wider community and encourage others to make use of ionic liquids in tackling scientific challenges.
Abstract: Ionic liquids are room-temperature molten salts, composed mostly of organic ions that may undergo almost unlimited structural variations. This review covers the newest aspects of ionic liquids in applications where their ion conductivity is exploited; as electrochemical solvents for metal/semiconductor electrodeposition, and as batteries and fuel cells where conventional media, organic solvents (in batteries) or water (in polymer-electrolyte-membrane fuel cells), fail. Biology and biomimetic processes in ionic liquids are also discussed. In these decidedly different materials, some enzymes show activity that is not exhibited in more traditional systems, creating huge potential for bioinspired catalysis and biofuel cells. Our goal in this review is to survey the recent key developments and issues within ionic-liquid research in these areas. As well as informing materials scientists, we hope to generate interest in the wider community and encourage others to make use of ionic liquids in tackling scientific challenges.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present the present status of lithium battery technology, then focus on its near future development and finally examine important new directions aimed at achieving quantum jumps in energy and power content.

4,363 citations

Journal ArticleDOI
TL;DR: The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature, and challenges in producing high-performing electrolytes are analyzed.
Abstract: Electrolytes have been identified as some of the most influential components in the performance of electrochemical supercapacitors (ESs), which include: electrical double-layer capacitors, pseudocapacitors and hybrid supercapacitors. This paper reviews recent progress in the research and development of ES electrolytes. The electrolytes are classified into several categories, including: aqueous, organic, ionic liquids, solid-state or quasi-solid-state, as well as redox-active electrolytes. Effects of electrolyte properties on ES performance are discussed in detail. The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature. Interaction among the electrolytes, electro-active materials and inactive components (current collectors, binders, and separators) is discussed. The challenges in producing high-performing electrolytes are analyzed. Several possible research directions to overcome these challenges are proposed for future efforts, with the main aim of improving ESs' energy density without sacrificing existing advantages (e.g., a high power density and a long cycle-life) (507 references).

2,480 citations

Journal ArticleDOI
TL;DR: The Review will consider some of the current scientific issues underpinning lithium batteries and electric double-layer capacitors.
Abstract: Energy-storage technologies, including electrical double-layer capacitors and rechargeable batteries, have attracted significant attention for applications in portable electronic devices, electric vehicles, bulk electricity storage at power stations, and “load leveling” of renewable sources, such as solar energy and wind power. Transforming lithium batteries and electric double-layer capacitors requires a step change in the science underpinning these devices, including the discovery of new materials, new electrochemistry, and an increased understanding of the processes on which the devices depend. The Review will consider some of the current scientific issues underpinning lithium batteries and electric double-layer capacitors.

2,412 citations

References
More filters
Journal ArticleDOI
06 Feb 2008-Nature
TL;DR: Researchers must find a sustainable way of providing the power their modern lifestyles demand to ensure the continued existence of clean energy sources.
Abstract: Researchers must find a sustainable way of providing the power our modern lifestyles demand.

15,980 citations


"Ionic-liquid materials for the elec..." refers background in this paper

  • ...Electrochemical systems, such as batteries, are ideal for this purpos...

    [...]

Journal ArticleDOI
TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Abstract: Electrochemical capacitors, also called supercapacitors, store energy using either ion adsorption (electrochemical double layer capacitors) or fast surface redox reactions (pseudo-capacitors). They can complement or replace batteries in electrical energy storage and harvesting applications, when high power delivery or uptake is needed. A notable improvement in performance has been achieved through recent advances in understanding charge storage mechanisms and the development of advanced nanostructured materials. The discovery that ion desolvation occurs in pores smaller than the solvated ions has led to higher capacitance for electrochemical double layer capacitors using carbon electrodes with subnanometre pores, and opened the door to designing high-energy density devices using a variety of electrolytes. Combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries. The use of carbon nanotubes has further advanced micro-electrochemical capacitors, enabling flexible and adaptable devices to be made. Mathematical modelling and simulation will be the key to success in designing tomorrow's high-energy and high-power devices.

14,213 citations


"Ionic-liquid materials for the elec..." refers background in this paper

  • ...Supercapacitors — electrochemical devices based on two inert electrodes separated by an electrolyte — are the components of choic...

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that cellulose can be dissolved without activation or pretreatment in, and regenerated from, 1-butyl-3-methylimidazolium chloride and other hydrophilic ionic liquids.
Abstract: We report here initial results that demonstrate that cellulose can be dissolved without activation or pretreatment in, and regenerated from, 1-butyl-3-methylimidazolium chloride and other hydrophilic ionic liquids. This may enable the application of ionic liquids as alternatives to environmentally undesirable solvents currently used for dissolution of this important bioresource.

4,276 citations


"Ionic-liquid materials for the elec..." refers methods in this paper

  • ...Initial success was achieved by using 1-butyl-3-methylimidazolium chloride ([bmim]Cl...

    [...]

Book
01 Jan 2002
TL;DR: The early years of Ionic liquid production were covered in this article, where a new generation of soluble supports for Supported Organic Synthesis (SPOS) was proposed. But this support was not applied to the task-specific Ionic liquids.
Abstract: Preface A Note From The Editors THE EARLY YEARS OF IONIC LIQUIDS SYNTHESIS AND PURIFICATION Synthesis Quality Aspects and other Questions Related to Commercial Ionic Liquid Production Synthesis of Task-specific Ionic Liquids PHYSICO-CHEMICAL PROPERTIES Melting Points Viscosity and Density Solubility and Solvation in Ionic Liquids Gas Solubilities Polarity Electrochemistry STRUCTURE AND DYNAMICS Order in the Liquid State and Structure Computational Modelling of Ionic Liquids Translational Diffusion Molecular Reorientational Dynamics ORGANIC SYNTHESIS Ionic Liquids in Organic Synthesis: Effects on Rate and Selectivity Stoicheiometric Organic Reactions and Acid-catalysed Reactions in Ionic Liquids Transition Metal Catalysis in Ionic Liquids Ionic Liquids in Multiphasic Reactions Task Specific Ionic Liquids (TSILs): A New Generation of Soluble Supports for Supported Organic Synthesis (SPOS) Supported Ionic Liquid Phase Catalysts Multiphasic Catalysis Using Ionic Liquids in Combination with Compressed CO2 INORGANIC SYNTHESIS Directed Inorganic and Organometallic Synthesis Making of Inorganic Materials by Electrochemical Methods Ionic Liquids in Material Synthesis: Functional Nanoparticles and Other Inorganic Nanostructures POLYMER SYNTHESIS IN IONIC LIQUIDS BIOCATALYTIC REACTIONS IN IONIC LIQUIDS INDUSTRIAL APPLICATIONS OF IONIC LIQUIDS CONLUDING REMARKS AND OUTLOOK

3,423 citations

Book
01 Mar 2003
TL;DR: In this article, the authors present a survey of fuel cell technologies and applications, focusing on hydrogen storage, hydrogen generation, and other energy conversion related topics, as well as their applications.
Abstract: VOLUME 1: FUNDAMENTALS AND SURVEY OF SYSTEMS. Contributors to Volume 1. Foreword. Preface. Abbreviations and Acronyms. Part 1: Thermodynamics and kinetics of fuel cell reactions. Part 2: Mass transfer in fuel cells. Part 3: Heat transfer in fuel cells. Part 4: Fuel cell principles, systems and applications. Contents for Volumes 2, 3 and 4. Subject Index. VOLUME 2: ELECTROCATALYSIS. Contributors to Volume 2. Foreword. Preface. Abbreviations and Acronyms. Part 1: Introduction. Part 2: Theory of electrocatalysis. Part 3: Methods in electrocatalysis. Part 4: The hydrogen oxidation/evolution reaction. Part 5: The oxygen reduction/evolution reaction. Part 6: Oxidation of small organic molecules. Part 7: Other energy conversion related topics. Contents for Volumes 1, 3 and 4. Subject Index. VOLUME 3: FUEL CELL TECHNOLOGY AND APPLICATIONS: PART 1. Contributors to Volumes 3 and 4. Foreword. Preface. Abbreviations and Acronyms. Part 1: Sustainable energy supply. Part 2: Hydrogen storage and hydrogen generation. Development prospects for hydrogen storage. Chemical hydrogen storage devices. Reforming of methanol and fuel processor development. Fuel processing from hydrocarbons to hydrogen. Well-to-wheel efficiencies. Hydrogen safety, codes and standards. Part 3: Polymer electrolyte membrane fuel cell systems (PEMFC). Bipolar plate materials and flow field design. Membrane materials. Electro-catalysts. Membrane-electrode-assembly (MEA). State-of-the-art performance and durability. VOLUME 4: FUEL CELL TECHNOLOGY AND APPLICATIONS, PART 2. Contributors to Volume 3 and 4. Foreword. Preface. Abbreviations and Acronyms. Part 3: Polymer electrolyte membrane fuel cells and systems (PEMFC) (Continued from previous volume). System design and system-specific aspects. Air-supply components. Applications based on PEM-technology. Part 4: Alkaline fuel cells and systems (AFC). Part 5: Phosphoric acid fuel cells and systems (PAFC). Part 6: Direct methanol fuel cells and systems (DMFC). Part 7: Molten carbonate fuel cells and systems (MCFC). Part 8: Solid oxide fuel cells and systems (SOFC). Materials. Stack and system design. New concepts. Part 9: Primary and secondary metal/air cells. Part 10: Portable fuel cell systems. Part 11: Current fuel cell propulsion systems. PEM fuel cell systems for cars/buses. PEM fuel cell systems for submarines. AFC fuel cell systems. Part 12: Electric utility fuel cell systems. Part 13: Future prospects of fuel cell systems. Contents for Volumes 1 and 2. Subject Index.

2,917 citations