scispace - formally typeset
Journal ArticleDOI

Iridium-Based Multimetallic Porous Hollow Nanocrystals for Efficient Overall-Water-Splitting Catalysis

Reads0
Chats0
TLDR
First-principles calculations reveal a ligand effect, induced by alloying Ir with 3d transition metals, can weaken the adsorption energy of oxygen intermediates, which is the key to realizing much-enhanced OER activity.
Abstract
The development of active and durable bifunctional electrocatalysts for overall water splitting is mandatory for renewable energy conversion. This study reports a general method for controllable synthesis of a class of IrM (M = Co, Ni, CoNi) multimetallic porous hollow nanocrystals (PHNCs), through etching Ir-based, multimetallic, solid nanocrystals using Fe3+ ions, as catalysts for boosting overall water splitting. The Ir-based multimetallic PHNCs show transition-metal-dependent bifunctional electrocatalytic activities for both the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in acidic electrolyte, with IrCo and IrCoNi PHNCs being the best for HER and OER, respectively. First-principles calculations reveal a ligand effect, induced by alloying Ir with 3d transition metals, can weaken the adsorption energy of oxygen intermediates, which is the key to realizing much-enhanced OER activity. The IrCoNi PHNCs are highly efficient in overall-water-splitting catalysis by showing a low cell voltage of only 1.56 V at a current density of 2 mA cm-2 , and only 8 mV of polarization-curve shift after a 1000-cycle durability test in 0.5 m H2 SO4 solution. This work highlights a potentially powerful strategy toward the general synthesis of novel, multimetallic, PHNCs as highly active and durable bifunctional electrocatalysts for high-performance electrochemical overall-water-splitting devices.

read more

Citations
More filters
Journal ArticleDOI

A review on fundamentals for designing oxygen evolution electrocatalysts

TL;DR: This article summarized the recent progress in understanding OER mechanisms, which include the conventional adsorbate evolution mechanism (AEM) and lattice-oxygen-mediated mechanism (LOM) from both theoretical and experimental aspects, and introduced strategies to reduce overpotential.
Journal ArticleDOI

Robust noble metal-based electrocatalysts for oxygen evolution reaction

TL;DR: This tutorial review covered the recent progress in the composition and structure optimization of NMEs for OER including Ir- and Ru-based oxides and alloys, and noble-metals beyond Ir and Ru with a variety of morphologies.
Journal Article

Molecular insight in structure and activity of highly efficient, low-Ir Ir-Ni oxide catalysts for electrochemical water splitting (OER)

TL;DR: This study highlights a novel, highly active oxygen evolution catalyst and provides novel important insights into the structure and performance of bimetallic oxide OER electrocatalysts in corrosive acidic environments.
References
More filters
Journal ArticleDOI

Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction

TL;DR: In this paper, the authors report a protocol for evaluating the activity, stability, and Faradaic efficiency of electrodeposited oxygen-evolving electrocatalysts for water oxidation.
Journal ArticleDOI

Noble metal-free hydrogen evolution catalysts for water splitting

TL;DR: This review highlights the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER), and summarizes some important examples showing that non-Pt HER electrocatsalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalyst.
Journal ArticleDOI

Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions

TL;DR: The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward a series of key clean energy conversion reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties.
Journal ArticleDOI

Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices

TL;DR: A standard protocol is used as a primary screen for evaluating the activity, short-term (2 h) stability, and electrochemically active surface area (ECSA) of 18 and 26 electrocatalysts for the hydrogen evolution reaction (HER and OER) under conditions relevant to an integrated solar water-splitting device in aqueous acidic or alkaline solution.
Journal ArticleDOI

Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces

TL;DR: A highly active and durable class of electrocatalysts is synthesized by exploiting the structural evolution of platinum-nickel (Pt-Ni) bimetallic nanocrystals by exploitingThe starting material, crystalline PtNi3 polyhedra, transforms in solution by interior erosion into Pt3Ni nanoframes with surfaces that offer three-dimensional molecular accessibility.
Related Papers (5)