scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Irradiation effects in carbon nanostructures

01 Aug 1999-Reports on Progress in Physics (IOP Publishing)-Vol. 62, Iss: 8, pp 1181-1221
TL;DR: In this article, a review of the basic mechanisms of radiation effects in solids with particular emphasis on atom displacements by knock-on collisions is discussed. But the main part of this review deals with alterations of carbon nanostructures by the electron beam in an electron microscope.
Abstract: The paper reviews the principles of interaction of energetic particles with solid carbon and carbon nanostructures. The reader is first introduced to the basic mechanisms of radiation effects in solids with particular emphasis on atom displacements by knock-on collisions. The influence of various parameters on the displacement cross sections of carbon atoms is discussed. The types of irradiation-induced defects and their migration are described as well as ordering phenomena which are observable under the non-equilibrium conditions of irradiation. The main part of this review deals with alterations of carbon nanostructures by the electron beam in an electron microscope. This type of experiment is of paramount importance because it allows in situ observation of dynamic processes on an atomic scale. In the second part, radiation effects in the modifications of elemental carbon, in particular in graphite which forms the crystallographic basis of most carbon nanostructures, are treated in detail. It follows a review of the available experimental results on radiation defects in carbon nanostructures such as fullerenes, nanotubes and carbon onions. Finally, the phenomena of structure formation under irradiation, in particular the self-assembling of spherical carbon onions and the irradiation-induced transformation of graphitic nanoparticles into diamond, are presented and discussed qualitatively in the context of non-equilibrium structure formation.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors describe the deposition methods, deposition mechanisms, characterisation methods, electronic structure, gap states, defects, doping, luminescence, field emission, mechanical properties and some applications of diamond-like carbon.
Abstract: Diamond-like carbon (DLC) is a metastable form of amorphous carbon with significant sp3 bonding. DLC is a semiconductor with a high mechanical hardness, chemical inertness, and optical transparency. This review will describe the deposition methods, deposition mechanisms, characterisation methods, electronic structure, gap states, defects, doping, luminescence, field emission, mechanical properties and some applications of DLCs. The films have widespread applications as protective coatings in areas, such as magnetic storage disks, optical windows and micro-electromechanical devices (MEMs).

5,400 citations

Journal ArticleDOI
25 Jan 2011-ACS Nano
TL;DR: In this article, the present knowledge about point and line defects in graphene are reviewed and particular emphasis is put on the unique ability of graphene to reconstruct its lattice around intrinsic defects, leading to interesting effects and potential applications.
Abstract: Graphene is one of the most promising materials in nanotechnology. The electronic and mechanical properties of graphene samples with high perfection of the atomic lattice are outstanding, but structural defects, which may appear during growth or processing, deteriorate the performance of graphene-based devices. However, deviations from perfection can be useful in some applications, as they make it possible to tailor the local properties of graphene and to achieve new functionalities. In this article, the present knowledge about point and line defects in graphene are reviewed. Particular emphasis is put on the unique ability of graphene to reconstruct its lattice around intrinsic defects, leading to interesting effects and potential applications. Extrinsic defects such as foreign atoms which are of equally high importance for designing graphene-based devices with dedicated properties are also discussed.

2,828 citations


Cites background or methods from "Irradiation effects in carbon nanos..."

  • ...18 22 eV, 33,34 whereas experiments have yielded 18 20 eV.(35,36) Displacement thresholds of 18 20 eV need electron energies of roughly 90 100 keV as estimated within the McKinley Feshbach approximation....

    [...]

  • ...Irradiation of graphene with electrons or ions can generate point defects due to the ballistic ejection of carbon atoms.(35,85,86) As mentioned above, the threshold energy of approximately 18 20 eV has to be transferred to a carbon atom to leave its lattice site....

    [...]

  • ...Displacement thresholds of 18 20 eV need electron energies of roughly 90 100 keV as estimated within the McKinley Feshbach approximation.(35,37) Single Vacancies....

    [...]

Journal ArticleDOI
TL;DR: A detailed description of the electronic properties, chemical state, and structure of uniform single and few-layered graphene oxide (GO) thin films at different stages of reduction is reported in this paper.
Abstract: A detailed description of the electronic properties, chemical state, and structure of uniform single and few-layered graphene oxide (GO) thin films at different stages of reduction is reported. The residual oxygen content and structure of GO are monitored and these chemical and structural characteristics are correlated to electronic properties of the thin films at various stages of reduction. It is found that the electrical characteristics of reduced GO do not approach those of intrinsic graphene obtained by mechanical cleaving because the material remains significantly oxidized. The residual oxygen forms sp3 bonds with carbon atoms in the basal plane such that the carbon sp2 bonding fraction in fully reduced GO is ∼0.80. The minority sp3 bonds disrupt the transport of carriers delocalized in the sp2 network, limiting the mobility, and conductivity of reduced GO thin films. Extrapolation of electrical conductivity data as a function of oxygen content reveals that complete removal of oxygen should lead to properties that are comparable to graphene.

1,646 citations

Journal ArticleDOI
19 Aug 2004-Nature
TL;DR: Observations in situ of defect formation in single graphene layers by high-resolution TEM are reported and are expected to be of use when engineering the properties of carbon nanostructures for specific device applications.
Abstract: Atomic-scale defects in graphene layers alter the physical and chemical properties of carbon nanostructures. Theoretical predictions have recently shown that energetic particles such as electrons and ions can induce polymorphic atomic defects in graphene layers as a result of knock-on atom displacements. However, the number of experimental reports on these defects is limited. The graphite network in single-walled carbon nanotubes has been visualized by transmission electron microscopy (TEM) and their chiral indices have been determined. But the methods used require a long image acquisition time and intensive numerical treatments after observations to find an 'average' image, which prevents the accurate detection and investigation of defect structures. Here we report observations in situ of defect formation in single graphene layers by high-resolution TEM. The observed structures are expected to be of use when engineering the properties of carbon nanostructures for specific device applications.

1,517 citations


Cites background from "Irradiation effects in carbon nanos..."

  • ...Imaging a point defect, such as an atomic vacancy, on a graphene layer is even more challenging and is of crucial importance because it refers directly to the physical and even the magnetic properties of this materia...

    [...]

Journal ArticleDOI
TL;DR: In this paper, the electronic and transport properties of carbon nanotubes are reviewed, and the fundamental aspects of conduction regimes and transport length scales are presented using simple models of disorder, with the derivation of a few analytic results concerning specific situations of short and long-range static perturbations.
Abstract: This article reviews the electronic and transport properties of carbon nanotubes. The focus is mainly theoretical, but when appropriate the relation with experimental results is mentioned. While simple band-folding arguments will be invoked to rationalize how the metallic or semiconducting character of nanotubes is inferred from their topological structure, more sophisticated tight-binding and ab initio treatments will be introduced to discuss more subtle physical effects, such as those induced by curvature, tube-tube interactions, or topological defects. The same approach will be followed for transport properties. The fundamental aspects of conduction regimes and transport length scales will be presented using simple models of disorder, with the derivation of a few analytic results concerning specific situations of shortand long-range static perturbations. Further, the latest developments in semiempirical or ab initio simulations aimed at exploring the effect of realistic static scatterers chemical impurities, adsorbed molecules, etc. or inelastic electron-phonon interactions will be emphasized. Finally, specific issues, going beyond the noninteracting electron model, will be addressed, including excitonic effects in optical experiments, the Coulomb-blockade regime, and the Luttinger liquid, charge density waves, or superconducting transition.

1,249 citations


Additional excerpts

  • ...Banhart, 1999"....

    [...]

References
More filters
Journal ArticleDOI
Sumio Iijima1
01 Nov 1991-Nature
TL;DR: Iijima et al. as mentioned in this paper reported the preparation of a new type of finite carbon structure consisting of needle-like tubes, which were produced using an arc-discharge evaporation method similar to that used for fullerene synthesis.
Abstract: THE synthesis of molecular carbon structures in the form of C60 and other fullerenes1 has stimulated intense interest in the structures accessible to graphitic carbon sheets. Here I report the preparation of a new type of finite carbon structure consisting of needle-like tubes. Produced using an arc-discharge evaporation method similar to that used for fullerene synthesis, the needles grow at the negative end of the electrode used for the arc discharge. Electron microscopy reveals that each needle comprises coaxial tubes of graphitic sheets, ranging in number from 2 up to about 50. On each tube the carbon-atom hexagons are arranged in a helical fashion about the needle axis. The helical pitch varies from needle to needle and from tube to tube within a single needle. It appears that this helical structure may aid the growth process. The formation of these needles, ranging from a few to a few tens of nanometres in diameter, suggests that engineering of carbon structures should be possible on scales considerably greater than those relevant to the fullerenes. On 7 November 1991, Sumio Iijima announced in Nature the preparation of nanometre-size, needle-like tubes of carbon — now familiar as 'nanotubes'. Used in microelectronic circuitry and microscopy, and as a tool to test quantum mechanics and model biological systems, nanotubes seem to have unlimited potential.

39,086 citations

Journal ArticleDOI
01 Nov 1985-Nature
TL;DR: In this article, the authors proposed a truncated icosahedron, a polygon with 60 vertices and 32 faces, 12 of which are pentagonal and 20 hexagonal.
Abstract: During experiments aimed at understanding the mechanisms by which long-chain carbon molecules are formed in interstellar space and circumstellar shells1, graphite has been vaporized by laser irradiation, producing a remarkably stable cluster consisting of 60 carbon atoms. Concerning the question of what kind of 60-carbon atom structure might give rise to a superstable species, we suggest a truncated icosahedron, a polygon with 60 vertices and 32 faces, 12 of which are pentagonal and 20 hexagonal. This object is commonly encountered as the football shown in Fig. 1. The C60 molecule which results when a carbon atom is placed at each vertex of this structure has all valences satisfied by two single bonds and one double bond, has many resonance structures, and appears to be aromatic. Before 1985, it was generally accepted that elemental carbon exists in two forms, or allotropes: diamond and graphite. Then, Kroto et al. identified the signature of a new, stable form of carbon that consisted of clusters of 60 atoms. They called this third allotrope of carbon 'buckminsterfullerene', and proposed that it consisted of polyhedral molecules in which the atoms were arrayed at the vertices of a truncated icosahedron. In 1990, the synthesis of large quantities of C60 [see Nature 347, 354–358 (1990)] confirmed this hypothesis.

13,394 citations

Journal ArticleDOI
27 Sep 1990-Nature
TL;DR: In this article, a new form of pure, solid carbon has been synthesized consisting of a somewhat disordered hexagonal close packing of soccer-ball-shaped C60 molecules.
Abstract: A new form of pure, solid carbon has been synthesized consisting of a somewhat disordered hexagonal close packing of soccer-ball-shaped C60 molecules. Infrared spectra and X-ray diffraction studies of the molecular packing confirm that the molecules have the anticipated 'fullerene' structure. Mass spectroscopy shows that the C70 molecule is present at levels of a few per cent. The solid-state and molecular properties of C60 and its possible role in interstellar space can now be studied in detail.

6,650 citations

Journal ArticleDOI
TL;DR: A comprehensive review of spatiotemporal pattern formation in systems driven away from equilibrium is presented in this article, with emphasis on comparisons between theory and quantitative experiments, and a classification of patterns in terms of the characteristic wave vector q 0 and frequency ω 0 of the instability.
Abstract: A comprehensive review of spatiotemporal pattern formation in systems driven away from equilibrium is presented, with emphasis on comparisons between theory and quantitative experiments. Examples include patterns in hydrodynamic systems such as thermal convection in pure fluids and binary mixtures, Taylor-Couette flow, parametric-wave instabilities, as well as patterns in solidification fronts, nonlinear optics, oscillatory chemical reactions and excitable biological media. The theoretical starting point is usually a set of deterministic equations of motion, typically in the form of nonlinear partial differential equations. These are sometimes supplemented by stochastic terms representing thermal or instrumental noise, but for macroscopic systems and carefully designed experiments the stochastic forces are often negligible. An aim of theory is to describe solutions of the deterministic equations that are likely to be reached starting from typical initial conditions and to persist at long times. A unified description is developed, based on the linear instabilities of a homogeneous state, which leads naturally to a classification of patterns in terms of the characteristic wave vector q0 and frequency ω0 of the instability. Type Is systems (ω0=0, q0≠0) are stationary in time and periodic in space; type IIIo systems (ω0≠0, q0=0) are periodic in time and uniform in space; and type Io systems (ω0≠0, q0≠0) are periodic in both space and time. Near a continuous (or supercritical) instability, the dynamics may be accurately described via "amplitude equations," whose form is universal for each type of instability. The specifics of each system enter only through the nonuniversal coefficients. Far from the instability threshold a different universal description known as the "phase equation" may be derived, but it is restricted to slow distortions of an ideal pattern. For many systems appropriate starting equations are either not known or too complicated to analyze conveniently. It is thus useful to introduce phenomenological order-parameter models, which lead to the correct amplitude equations near threshold, and which may be solved analytically or numerically in the nonlinear regime away from the instability. The above theoretical methods are useful in analyzing "real pattern effects" such as the influence of external boundaries, or the formation and dynamics of defects in ideal structures. An important element in nonequilibrium systems is the appearance of deterministic chaos. A greal deal is known about systems with a small number of degrees of freedom displaying "temporal chaos," where the structure of the phase space can be analyzed in detail. For spatially extended systems with many degrees of freedom, on the other hand, one is dealing with spatiotemporal chaos and appropriate methods of analysis need to be developed. In addition to the general features of nonequilibrium pattern formation discussed above, detailed reviews of theoretical and experimental work on many specific systems are presented. These include Rayleigh-Benard convection in a pure fluid, convection in binary-fluid mixtures, electrohydrodynamic convection in nematic liquid crystals, Taylor-Couette flow between rotating cylinders, parametric surface waves, patterns in certain open flow systems, oscillatory chemical reactions, static and dynamic patterns in biological media, crystallization fronts, and patterns in nonlinear optics. A concluding section summarizes what has and has not been accomplished, and attempts to assess the prospects for the future.

6,145 citations

Journal ArticleDOI
20 Jun 1996-Nature
TL;DR: In this article, the amplitude of the intrinsic thermal vibrations of isolated carbon nanotubes was measured in the transmission electron microscopy (TEM) and it was shown that they have exceptionally high Young's moduli, in the terapascal (TPa) range.
Abstract: CARBON nanotubes are predicted to have interesting mechanical properties—in particular, high stiffness and axial strength—as a result of their seamless cylindrical graphitic structure1–5. Their mechanical properties have so far eluded direct measurement, however, because of the very small dimensions of nanotubes. Here we estimate the Young's modulus of isolated nanotubes by measuring, in the transmission electron microscope, the amplitude of their intrinsic thermal vibrations. We find that carbon nanotubes have exceptionally high Young's moduli, in the terapascal (TPa) range. Their high stiffness, coupled with their low density, implies that nanotubes might be useful as nanoscale fibres in strong, lightweight composite materials.

5,207 citations