scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Is it Reasonable to Obtain Information on the Polarizability and Hyperpolarizability Only from the Electron Density

29 May 2018-Australian Journal of Chemistry (CSIRO PUBLISHING)-Vol. 71, Iss: 4, pp 295-306
TL;DR: In this paper, the static electronic polarizability and hyperpolarizability are derived in terms of moments of the ground-state electron density matrix by applying the Unsold approximation and a generalization of the Fermi-Amaldi approximation.
Abstract: Formulae for the static electronic polarizability and hyperpolarizability are derived in terms of moments of the ground-state electron density matrix by applying the Unsold approximation and a generalization of the Fermi-Amaldi approximation. The latter formula for the hyperpolarizability appears to be new. The formulae manifestly transform correctly under rotations, and they are observed to be essentially cumulant expressions. Consequently, they are additive over different regions. The properties of the formula are discussed in relation to others that have been proposed in order to clarify inconsistencies. The formulae are then tested against coupled-perturbed Hartree-Fock results for a set of 40 donor-π-acceptor systems. For the polarizability, the correlation is reasonable; therefore, electron density matrix moments from theory or experiment may be used to predict polarizabilities. By constrast, the results for the hyperpolarizabilities are poor, not even within one or two orders of magnitude. The formula for the two- and three-particle density matrices obtained as a side result in this work may be interesting for density functional theories.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a lightweight organic material, trans-4′-dimethylamino-4-nitro-α-cyanostilbene, exhibits notable charge carrier mobility.
Abstract: A lightweight organic material, trans-4′-dimethylamino-4-nitro-α-cyanostilbene, exhibits notable charge carrier mobility (∼10–4 cm2 V–1 s–1) The non-centrosymmetric material also displays moderate

5 citations

Journal ArticleDOI
TL;DR: Using density functional theory (DFT) and information-theoretic approach (ITA) quantities to understand the physicochemical properties of biopolymers is still an unaccomplished and ongoing task as mentioned in this paper .
Abstract: Using density functional theory (DFT) and the information-theoretic approach (ITA) quantities to appreciate the energetics and properties of biopolymers is still an unaccomplished and ongoing task. To this end, we studied the building blocks of nucleic acid base pairs and small peptides. For base pairs, we have dissected the relative importance of energetic components by using two energy partition schemes in DFT. Our results convincingly show that the exchange-correlation effect predominantly governs the molecular stability of base pairs while the electrostatic potential plays a minor but indispensable role, and the steric effect is trivial. Furthermore, we have revealed that simple density-based ITA functions are in good relationships with molecular polarizabilities for a series of 30 hydrogen-bonded base pairs and all 20 natural α-amino acids, 400 dipeptides, and 8000 tripeptides. Based on these lines, one can easily predict the molecular polarizabilities of larger peptides, even proteins as long as the total molecular wavefunction is available, rather than solving the computationally demanding coupled-perturbed Hartree–Fock (CPHF) equation or its DFT counterpart coupled-perturbed Kohn–Sham (CPKS) equation.

4 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the ground state of an interacting electron gas in an external potential was investigated and it was proved that there exists a universal functional of the density, called F[n(mathrm{r})], independent of the potential of the electron gas.
Abstract: This paper deals with the ground state of an interacting electron gas in an external potential $v(\mathrm{r})$. It is proved that there exists a universal functional of the density, $F[n(\mathrm{r})]$, independent of $v(\mathrm{r})$, such that the expression $E\ensuremath{\equiv}\ensuremath{\int}v(\mathrm{r})n(\mathrm{r})d\mathrm{r}+F[n(\mathrm{r})]$ has as its minimum value the correct ground-state energy associated with $v(\mathrm{r})$. The functional $F[n(\mathrm{r})]$ is then discussed for two situations: (1) $n(\mathrm{r})={n}_{0}+\stackrel{\ifmmode \tilde{}\else \~{}\fi{}}{n}(\mathrm{r})$, $\frac{\stackrel{\ifmmode \tilde{}\else \~{}\fi{}}{n}}{{n}_{0}}\ensuremath{\ll}1$, and (2) $n(\mathrm{r})=\ensuremath{\phi}(\frac{\mathrm{r}}{{r}_{0}})$ with $\ensuremath{\phi}$ arbitrary and ${r}_{0}\ensuremath{\rightarrow}\ensuremath{\infty}$. In both cases $F$ can be expressed entirely in terms of the correlation energy and linear and higher order electronic polarizabilities of a uniform electron gas. This approach also sheds some light on generalized Thomas-Fermi methods and their limitations. Some new extensions of these methods are presented.

38,160 citations

Journal ArticleDOI
TL;DR: In this paper, a split-valence extended gaussian basis set was used to obtain the LCAO-MO-SCF energies of closed shell species with two non-hydrogen atoms.
Abstract: Polarization functions are added in two steps to a split-valence extended gaussian basis set: d-type gaussians on the first row atoms C. N, O and F and p-type gaussians on hydrogen. The same d-exponent of 0.8 is found to be satisfactory for these four atoms and the hydrogen p-exponent of 1.1 is adequate in their hydrides. The energy lowering due to d functions is found to depend on the local symmetry around the heavy atom. For the particular basis used, the energy lowerings due to d functions for various environments around the heavy atom are tabulated. These bases are then applied to a set of molecules containing up to two heavy atoms to obtain their LCAO-MO-SCF energies. The mean absolute deviation between theory and experiment (where available) for heats of hydrogenation of closed shell species with two non-hydrogen atoms is 4 kcal/mole for the basis set with full polarization. Estimates of hydrogenation energy errors at the Hartree-Fock limit, based on available calculations, are given.

12,669 citations

Journal ArticleDOI
TL;DR: The Cambridge Structural Database now contains data for more than a quarter of a million small-molecule crystal structures, and projections concerning future accession rates indicate that the CSD will contain at least 500,000 crystal structures by the year 2010.
Abstract: The Cambridge Structural Database (CSD) now contains data for more than a quarter of a million small-molecule crystal structures. The information content of the CSD, together with methods for data acquisition, processing and validation, are summarized, with particular emphasis on the chemical information added by CSD editors. Nearly 80% of new structural data arrives electronically, mostly in CIF format, and the CCDC acts as the official crystal structure data depository for 51 major journals. The CCDC now maintains both a CIF archive (more than 73000 CIFs dating from 1996), as well as the distributed binary CSD archive; the availability of data in both archives is discussed. A statistical survey of the CSD is also presented and projections concerning future accession rates indicate that the CSD will contain at least 500000 crystal structures by the year 2010.

9,865 citations

Journal ArticleDOI
TL;DR: In this article, a time-dependent version of density functional theory was proposed to deal with the non-perturbative quantum mechanical description of interacting many-body systems moving in a very strong timedependent external field.
Abstract: The response of an interacting many-particle system to a time-dependent external field can usually be treated within linear response theory. Due to rapid experimental progress in the field of laser physics, however, ultra-short laser pulses of very high intensity have become available in recent years. The electric field produced in such pulses can reach the strength of the electric field caused by atomic nuclei. If an atomic system is placed in the focus of such a laser pulse one observes a wealth of new phenomena [1] which cannot be explained by traditional perturbation theory. The non-perturbative quantum mechanical description of interacting particles moving in a very strong time-dependent external field therefore has become a prominent problem of theoretical physics. In principle, it requires a full solution of the time-dependent Schrodinger equation for the interacting many-body system, which is an exceedingly difficult task. In view of the success of density functional methods in the treatment of stationary many-body systems and in view of their numerical simplicity, a time-dependent version of density functional theory appears highly desirable, both within and beyond the regime of linear response.

6,874 citations

Journal ArticleDOI
TL;DR: In this article, the 631G* and 6 31G* basis sets were extended through the second-row of the periodic table and the Hartree-Fock wave functions were used to obtain the equilibrium geometries for one-heavy-atom hydrides.
Abstract: The 6‐31G* and 6‐31G** basis sets previously introduced for first‐row atoms have been extended through the second‐row of the periodic table. Equilibrium geometries for one‐heavy‐atom hydrides calculated for the two‐basis sets and using Hartree–Fock wave functions are in good agreement both with each other and with the experimental data. HF/6‐31G* structures, obtained for two‐heavy‐atom hydrides and for a variety of hypervalent second‐row molecules, are also in excellent accord with experimental equilibrium geometries. No large deviations between calculated and experimental single bond lengths have been noted, in contrast to previous work on analogous first‐row compounds, where limiting Hartree–Fock distances were in error by up to a tenth of an angstrom. Equilibrium geometries calculated at the HF/6‐31G level are consistently in better agreement with the experimental data than are those previously obtained using the simple split‐valance 3‐21G basis set for both normal‐ and hypervalent compounds. Normal‐mode vibrational frequencies derived from 6‐31G* level calculations are consistently larger than the corresponding experimental values, typically by 10%–15%; they are of much more uniform quality than those obtained from the 3‐21G basis set. Hydrogenation energies calculated for normal‐ and hypervalent compounds are in moderate accord with experimental data, although in some instances large errors appear. Calculated energies relating to the stabilities of single and multiple bonds are in much better accord with the experimental energy differences.

6,870 citations