scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Is Second-Order Information Helpful for Large-Scale Visual Recognition?

TL;DR: A Matrix Power Normalized Covariance (MPNCOV) method that develops forward and backward propagation formulas regarding the nonlinear matrix functions such that MPN-COV can be trained end-to-end and analyzes both qualitatively and quantitatively its advantage over the well-known Log-Euclidean metric.
Abstract: By stacking layers of convolution and nonlinearity, convolutional networks (ConvNets) effectively learn from lowlevel to high-level features and discriminative representations. Since the end goal of large-scale recognition is to delineate complex boundaries of thousands of classes, adequate exploration of feature distributions is important for realizing full potentials of ConvNets. However, state-of-theart works concentrate only on deeper or wider architecture design, while rarely exploring feature statistics higher than first-order. We take a step towards addressing this problem. Our method consists in covariance pooling, instead of the most commonly used first-order pooling, of highlevel convolutional features. The main challenges involved are robust covariance estimation given a small sample of large-dimensional features and usage of the manifold structure of covariance matrices. To address these challenges, we present a Matrix Power Normalized Covariance (MPNCOV) method. We develop forward and backward propagation formulas regarding the nonlinear matrix functions such that MPN-COV can be trained end-to-end. In addition, we analyze both qualitatively and quantitatively its advantage over the well-known Log-Euclidean metric. On the ImageNet 2012 validation set, by combining MPN-COV we achieve over 4%, 3% and 2.5% gains for AlexNet, VGG-M and VGG-16, respectively; integration of MPN-COV into 50-layer ResNet outperforms ResNet-101 and is comparable to ResNet-152. The source code will be available on the project page: http://www.peihuali.org/MPN-COV.
Citations
More filters
Proceedings ArticleDOI
14 Jun 2020
TL;DR: The Efficient Channel Attention (ECA) module as discussed by the authors proposes a local cross-channel interaction strategy without dimensionality reduction, which can be efficiently implemented via 1D convolution, which only involves a handful of parameters while bringing clear performance gain.
Abstract: Recently, channel attention mechanism has demonstrated to offer great potential in improving the performance of deep convolutional neural networks (CNNs). However, most existing methods dedicate to developing more sophisticated attention modules for achieving better performance, which inevitably increase model complexity. To overcome the paradox of performance and complexity trade-off, this paper proposes an Efficient Channel Attention (ECA) module, which only involves a handful of parameters while bringing clear performance gain. By dissecting the channel attention module in SENet, we empirically show avoiding dimensionality reduction is important for learning channel attention, and appropriate cross-channel interaction can preserve performance while significantly decreasing model complexity. Therefore, we propose a local cross-channel interaction strategy without dimensionality reduction, which can be efficiently implemented via 1D convolution. Furthermore, we develop a method to adaptively select kernel size of 1D convolution, determining coverage of local cross-channel interaction. The proposed ECA module is both efficient and effective, e.g., the parameters and computations of our modules against backbone of ResNet50 are 80 vs. 24.37M and 4.7e-4 GFlops vs. 3.86 GFlops, respectively, and the performance boost is more than 2% in terms of Top-1 accuracy. We extensively evaluate our ECA module on image classification, object detection and instance segmentation with backbones of ResNets and MobileNetV2. The experimental results show our module is more efficient while performing favorably against its counterparts.

1,378 citations

Proceedings ArticleDOI
15 Jun 2019
TL;DR: Experimental results demonstrate the superiority of the SAN network over state-of-the-art SISR methods in terms of both quantitative metrics and visual quality.
Abstract: Recently, deep convolutional neural networks (CNNs) have been widely explored in single image super-resolution (SISR) and obtained remarkable performance. However, most of the existing CNN-based SISR methods mainly focus on wider or deeper architecture design, neglecting to explore the feature correlations of intermediate layers, hence hindering the representational power of CNNs. To address this issue, in this paper, we propose a second-order attention network (SAN) for more powerful feature expression and feature correlation learning. Specifically, a novel train- able second-order channel attention (SOCA) module is developed to adaptively rescale the channel-wise features by using second-order feature statistics for more discriminative representations. Furthermore, we present a non-locally enhanced residual group (NLRG) structure, which not only incorporates non-local operations to capture long-distance spatial contextual information, but also contains repeated local-source residual attention groups (LSRAG) to learn increasingly abstract feature representations. Experimental results demonstrate the superiority of our SAN network over state-of-the-art SISR methods in terms of both quantitative metrics and visual quality.

1,219 citations


Cites background from "Is Second-Order Information Helpful..."

  • ...On the other hand, recent works [19, 21] have shown that second-order statistics in deep CNNs are more helpful for more discriminative representations than first-order ones....

    [...]

  • ...It is shown in [27, 19] that covariance normalization plays a critical role for more discriminative representations....

    [...]

  • ...As explored in [19], α = 1/2 works well for more discriminative representations....

    [...]

Posted Content
TL;DR: This paper proposes an Efficient Channel Attention (ECA) module, which only involves a handful of parameters while bringing clear performance gain, and develops a method to adaptively select kernel size of 1D convolution, determining coverage of local cross-channel interaction.
Abstract: Recently, channel attention mechanism has demonstrated to offer great potential in improving the performance of deep convolutional neural networks (CNNs). However, most existing methods dedicate to developing more sophisticated attention modules for achieving better performance, which inevitably increase model complexity. To overcome the paradox of performance and complexity trade-off, this paper proposes an Efficient Channel Attention (ECA) module, which only involves a handful of parameters while bringing clear performance gain. By dissecting the channel attention module in SENet, we empirically show avoiding dimensionality reduction is important for learning channel attention, and appropriate cross-channel interaction can preserve performance while significantly decreasing model complexity. Therefore, we propose a local cross-channel interaction strategy without dimensionality reduction, which can be efficiently implemented via $1D$ convolution. Furthermore, we develop a method to adaptively select kernel size of $1D$ convolution, determining coverage of local cross-channel interaction. The proposed ECA module is efficient yet effective, e.g., the parameters and computations of our modules against backbone of ResNet50 are 80 vs. 24.37M and 4.7e-4 GFLOPs vs. 3.86 GFLOPs, respectively, and the performance boost is more than 2% in terms of Top-1 accuracy. We extensively evaluate our ECA module on image classification, object detection and instance segmentation with backbones of ResNets and MobileNetV2. The experimental results show our module is more efficient while performing favorably against its counterparts.

1,048 citations

Posted Content
TL;DR: This work proposes the "double attention block", a novel component that aggregates and propagates informative global features from the entire spatio-temporal space of input images/videos, enabling subsequent convolution layers to access featuresFrom the entire space efficiently.
Abstract: Learning to capture long-range relations is fundamental to image/video recognition Existing CNN models generally rely on increasing depth to model such relations which is highly inefficient In this work, we propose the "double attention block", a novel component that aggregates and propagates informative global features from the entire spatio-temporal space of input images/videos, enabling subsequent convolution layers to access features from the entire space efficiently The component is designed with a double attention mechanism in two steps, where the first step gathers features from the entire space into a compact set through second-order attention pooling and the second step adaptively selects and distributes features to each location via another attention The proposed double attention block is easy to adopt and can be plugged into existing deep neural networks conveniently We conduct extensive ablation studies and experiments on both image and video recognition tasks for evaluating its performance On the image recognition task, a ResNet-50 equipped with our double attention blocks outperforms a much larger ResNet-152 architecture on ImageNet-1k dataset with over 40% less the number of parameters and less FLOPs On the action recognition task, our proposed model achieves the state-of-the-art results on the Kinetics and UCF-101 datasets with significantly higher efficiency than recent works

262 citations


Cites background or methods from "Is Second-Order Information Helpful..."

  • ...The double-attention block is related to a number of recent works, including the Squeeze-andExcitation Networks [11], covariance pooling [14], the Non-local Neural Networks [25] and the Transformer architecture of [24]....

    [...]

  • ...Meanwhile, self-attentive and correlation operators like second-order pooling have been recently shown to work well in a wide range of tasks [24, 14, 15]....

    [...]

Journal ArticleDOI
TL;DR: The experimental results demonstrate that the proposed multilayer stacked covariance pooling method can not only consistently outperform the corresponding single-layer model but also achieve better classification performance than other pretrained CNN-based scene classification methods.
Abstract: This paper proposes a new method, called multilayer stacked covariance pooling (MSCP), for remote sensing scene classification The innovative contribution of the proposed method is that it is able to naturally combine multilayer feature maps, obtained by pretrained convolutional neural network (CNN) models Specifically, the proposed MSCP-based classification framework consists of the following three steps First, a pretrained CNN model is used to extract multilayer feature maps Then, the feature maps are stacked together, and a covariance matrix is calculated for the stacked features Each entry of the resulting covariance matrix stands for the covariance of two different feature maps, which provides a natural and innovative way to exploit the complementary information provided by feature maps coming from different layers Finally, the extracted covariance matrices are used as features for classification by a support vector machine The experimental results, conducted on three challenging data sets, demonstrate that the proposed MSCP method can not only consistently outperform the corresponding single-layer model but also achieve better classification performance than other pretrained CNN-based scene classification methods

226 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Journal ArticleDOI
01 Jan 1998
TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Abstract: Multilayer neural networks trained with the back-propagation algorithm constitute the best example of a successful gradient based learning technique. Given an appropriate network architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters, with minimal preprocessing. This paper reviews various methods applied to handwritten character recognition and compares them on a standard handwritten digit recognition task. Convolutional neural networks, which are specifically designed to deal with the variability of 2D shapes, are shown to outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation recognition, and language modeling. A new learning paradigm, called graph transformer networks (GTN), allows such multimodule systems to be trained globally using gradient-based methods so as to minimize an overall performance measure. Two systems for online handwriting recognition are described. Experiments demonstrate the advantage of global training, and the flexibility of graph transformer networks. A graph transformer network for reading a bank cheque is also described. It uses convolutional neural network character recognizers combined with global training techniques to provide record accuracy on business and personal cheques. It is deployed commercially and reads several million cheques per day.

42,067 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Trending Questions (1)
Is second-order information helpful for large-scale visual recognition?

Yes, second-order information is helpful for large-scale visual recognition. The paper proposes a Matrix Power Normalized Covariance (MPN-COV) method that explores second-order statistics and achieves competitive gains over methods that only use first-order information.