scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Is there a role for carbohydrate restriction in the treatment and prevention of cancer

26 Oct 2011-Nutrition & Metabolism (BioMed Central)-Vol. 8, Iss: 1, pp 75-75
TL;DR: The possible beneficial effects of low CHO diets on cancer prevention and treatment are addressed, with emphasis on the role of insulin and IGF1 signaling in tumorigenesis as well as altered dietary needs of cancer patients.
Abstract: Over the last years, evidence has accumulated suggesting that by systematically reducing the amount of dietary carbohydrates (CHOs) one could suppress, or at least delay, the emergence of cancer, and that proliferation of already existing tumor cells could be slowed down. This hypothesis is supported by the association between modern chronic diseases like the metabolic syndrome and the risk of developing or dying from cancer. CHOs or glucose, to which more complex carbohydrates are ultimately digested, can have direct and indirect effects on tumor cell proliferation: first, contrary to normal cells, most malignant cells depend on steady glucose availability in the blood for their energy and biomass generating demands and are not able to metabolize significant amounts of fatty acids or ketone bodies due to mitochondrial dysfunction. Second, high insulin and insulin-like growth factor (IGF)-1 levels resulting from chronic ingestion of CHO-rich Western diet meals, can directly promote tumor cell proliferation via the insulin/IGF1 signaling pathway. Third, ketone bodies that are elevated when insulin and blood glucose levels are low, have been found to negatively affect proliferation of different malignant cells in vitro or not to be usable by tumor cells for metabolic demands, and a multitude of mouse models have shown antitumorigenic properties of very low CHO ketogenic diets. In addition, many cancer patients exhibit an altered glucose metabolism characterized by insulin resistance and may profit from an increased protein and fat intake. In this review, we address the possible beneficial effects of low CHO diets on cancer prevention and treatment. Emphasis will be placed on the role of insulin and IGF1 signaling in tumorigenesis as well as altered dietary needs of cancer patients.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The observations corroborated earlier studies that suggest the importance of lowering serum LCA/DCA and increasing vitamin B6 intake to help prevent colon cancer and can be looked upon as a preliminary step in using 1HNMR analysis as a screening test before invasive procedures.
Abstract: Background. Colorectal carcinoma is the third cause of cancer deaths in the world. For diagnosis, invasive methods like colonoscopy and sigmoidoscopy are used, and noninvasive screening tests are not very accurate. We decided to study the potential of 1HNMR spectroscopy with metabolomics and chemometrics as a preliminary noninvasive test. We obtained a distinguishing pattern of metabolites and metabolic pathways between colon cancer patient and normal. Methods. Sera were obtained from confirmed colon cancer patients and the same number of healthy controls. Samples were sent for 1HNMR spectroscopy and analysis was carried out Chenomex and MATLAB software. Metabolites were identified using Human Metabolic Data Base (HDMB) and the main metabolic cycles were identified using Metaboanalyst software. Results. 15 metabolites were identified such as pyridoxine, orotidine, and taurocholic acid. Main metabolic cycles involved were the bile acid biosynthesis, vitamin B6 metabolism, methane metabolism, and glutathione metabolism. Discussion. The main detected metabolic cycles were also reported earlier in different cancers. Our observations corroborated earlier studies that suggest the importance of lowering serum LCA/DCA and increasing vitamin B6 intake to help prevent colon cancer. This work can be looked upon as a preliminary step in using 1HNMR analysis as a screening test before invasive procedures.

24 citations

Journal ArticleDOI
TL;DR: It is shown that circulating intelectin-1 (ITLN1) has prognostic significance in patients with advanced ovarian cancer, and that mesothelial cell-derived ITLN 1 in the omental tumor microenvironment suppresses ovarian cancer progression.
Abstract: Advanced ovarian cancer usually spreads to the omentum. However, the omental cell-derived molecular determinants modulating its progression have not been thoroughly characterized. Here, we show that circulating ITLN1 has prognostic significance in patients with advanced ovarian cancer. Further studies demonstrate that ITLN1 suppresses lactotransferrin’s effect on ovarian cancer cell invasion potential and proliferation by decreasing MMP1 expression and inducing a metabolic shift in metastatic ovarian cancer cells. Additionally, ovarian cancer-bearing mice treated with ITLN1 demonstrate marked decrease in tumor growth rates. These data suggest that downregulation of mesothelial cell-derived ITLN1 in the omental tumor microenvironment facilitates ovarian cancer progression. Advanced ovarian cancer usually spreads to the omentum. Here, the authors show that circulating intelectin-1 (ITLN1) has prognostic significance in patients with advanced ovarian cancer, and that mesothelial cell-derived ITLN1 in the omental tumor microenvironment suppresses ovarian cancer progression.

24 citations

Journal ArticleDOI
03 Dec 2020-PLOS ONE
TL;DR: The study provides proof of principle that a ketogenic diet a) results in serum insulin reduction and ketosis in a spontaneous breast cancer mouse model; b) can serve as a therapeutic anti-cancer agent; and c) can enhance the effects of rapamycin, an anti- cancer drug, permitting dose reduction for comparable effect.
Abstract: Background The effects of diet in cancer, in general, and breast cancer in particular, are not well understood. Insulin inhibition in ketogenic, high fat diets, modulate downstream signaling molecules and are postulated to have therapeutic benefits. Obesity and diabetes have been associated with higher incidence of breast cancer. Addition of anti-cancer drugs together with diet is also not well studied. Methods Two diets, one ketogenic, the other standard mouse chow, were tested in a spontaneous breast cancer model in 34 mice. Subgroups of 3–9 mice were assigned, in which the diet were implemented either with or without added rapamycin, an mTOR inhibitor and potential anti-cancer drug. Results Blood glucose and insulin concentrations in mice ingesting the ketogenic diet (KD) were significantly lower, whereas beta hydroxybutyrate (BHB) levels were significantly higher, respectively, than in mice on the standard diet (SD). Growth of primary breast tumors and lung metastases were inhibited, and lifespans were longer in the KD mice compared to mice on the SD (p<0.005). Rapamycin improved survival in both mouse diet groups, but when combined with the KD was more effective than when combined with the SD. Conclusions The study provides proof of principle that a ketogenic diet a) results in serum insulin reduction and ketosis in a spontaneous breast cancer mouse model; b) can serve as a therapeutic anti-cancer agent; and c) can enhance the effects of rapamycin, an anti-cancer drug, permitting dose reduction for comparable effect. Further, the ketogenic diet in this model produces superior cancer control than standard mouse chow whether with or without added rapamycin.

24 citations


Cites background from "Is there a role for carbohydrate re..."

  • ...disease progression throughout the course of the 28 day trial [5], Further, the metabolic rationale for ketogenic diets and insulin inhibition in cancer control is highly plausible [2,6]....

    [...]

Journal ArticleDOI
TL;DR: It is concluded that both diet and castration have a significant impact on the endocrinology of mice bearing LNCaP xenograft tumor growth and DHT specifically is likely to be mechanistic drivers behind the observed tumor growth suppression.

23 citations


Cites background from "Is there a role for carbohydrate re..."

  • ...This effect of ADT may be enhanced by high-carbohydrate/fat diets [28], and insulin and glucose promote aggressive tumor growth in mouse models [7,29]....

    [...]

  • ...This effect of ADT may be enhanced by high-carbohydrate, high-fat diets [28]....

    [...]

Journal ArticleDOI
18 Aug 2015-PLOS ONE
TL;DR: It is reported that BE prostate cells (RWPE-1) have a higher competence to utilize fatty acids as energy source than PCa cells (LNCaP, ABL, PC3) as shown not only by increased cell viability upon fatty acid supplementation but also by an increased ß-oxidation of fatty acids, although the base-line respiration was 2-fold higher in prostate cancer cells.
Abstract: Tumor cells adapt via metabolic reprogramming to meet elevated energy demands due to continuous proliferation, for example by switching to alternative energy sources. Nutrients such as glucose, fatty acids, ketone bodies and amino acids may be utilized as preferred substrates to fulfill increased energy requirements. In this study we investigated the metabolic characteristics of benign and cancer cells of the prostate with respect to their utilization of medium chain (MCTs) and long chain triglycerides (LCTs) under standard and glucose-starved culture conditions by assessing cell viability, glycolytic activity, mitochondrial respiration, the expression of genes encoding key metabolic enzymes as well as mitochondrial mass and mtDNA content. We report that BE prostate cells (RWPE-1) have a higher competence to utilize fatty acids as energy source than PCa cells (LNCaP, ABL, PC3) as shown not only by increased cell viability upon fatty acid supplementation but also by an increased s-oxidation of fatty acids, although the base-line respiration was 2-fold higher in prostate cancer cells. Moreover, BE RWPE-1 cells were found to compensate for glucose starvation in the presence of fatty acids. Of notice, these findings were confirmed in vivo by showing that PCa tissue has a lower capacity in oxidizing fatty acids than benign prostate. Collectively, these metabolic differences between benign and prostate cancer cells and especially their differential utilization of fatty acids could be exploited to establish novel diagnostic and therapeutic strategies.

23 citations

References
More filters
Journal ArticleDOI
04 Mar 2011-Cell
TL;DR: Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.

51,099 citations


"Is there a role for carbohydrate re..." refers background in this paper

  • ..., a pathological capability common to most, if not all, cancer cells [39]....

    [...]

Journal ArticleDOI
24 Jul 2008-Nature
TL;DR: The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.
Abstract: The mediators and cellular effectors of inflammation are important constituents of the local environment of tumours. In some types of cancer, inflammatory conditions are present before a malignant change occurs. Conversely, in other types of cancer, an oncogenic change induces an inflammatory microenvironment that promotes the development of tumours. Regardless of its origin, 'smouldering' inflammation in the tumour microenvironment has many tumour-promoting effects. It aids in the proliferation and survival of malignant cells, promotes angiogenesis and metastasis, subverts adaptive immune responses, and alters responses to hormones and chemotherapeutic agents. The molecular pathways of this cancer-related inflammation are now being unravelled, resulting in the identification of new target molecules that could lead to improved diagnosis and treatment.

9,282 citations


"Is there a role for carbohydrate re..." refers background in this paper

  • ...Inflammation is a wellestablished driver of early tumorigenesis and accompanies most, if not all cancers [148]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors propose that persistent metabolism of glucose to lactate even in aerobic conditions is an adaptation to intermittent hypoxia in pre-malignant lesions, which leads to microenvironmental acidosis requiring evolution to phenotypes resistant to acid-induced cell toxicity.
Abstract: If carcinogenesis occurs by somatic evolution, then common components of the cancer phenotype result from active selection and must, therefore, confer a significant growth advantage. A near-universal property of primary and metastatic cancers is upregulation of glycolysis, resulting in increased glucose consumption, which can be observed with clinical tumour imaging. We propose that persistent metabolism of glucose to lactate even in aerobic conditions is an adaptation to intermittent hypoxia in pre-malignant lesions. However, upregulation of glycolysis leads to microenvironmental acidosis requiring evolution to phenotypes resistant to acid-induced cell toxicity. Subsequent cell populations with upregulated glycolysis and acid resistance have a powerful growth advantage, which promotes unconstrained proliferation and invasion.

4,361 citations

Journal ArticleDOI
10 Aug 1956-Science

2,524 citations

Journal ArticleDOI
16 Apr 2010-Science
TL;DR: Dietary restriction and reduced activity of nutrient-sensing pathways may slow aging by similar mechanisms, which have been conserved during evolution, and their potential application to prevention of age-related disease and promotion of healthy aging in humans, and the challenge of possible negative side effects.
Abstract: When the food intake of organisms such as yeast and rodents is reduced (dietary restriction), they live longer than organisms fed a normal diet. A similar effect is seen when the activity of nutrient-sensing pathways is reduced by mutations or chemical inhibitors. In rodents, both dietary restriction and decreased nutrient-sensing pathway activity can lower the incidence of age-related loss of function and disease, including tumors and neurodegeneration. Dietary restriction also increases life span and protects against diabetes, cancer, and cardiovascular disease in rhesus monkeys, and in humans it causes changes that protect against these age-related pathologies. Tumors and diabetes are also uncommon in humans with mutations in the growth hormone receptor, and natural genetic variants in nutrient-sensing pathways are associated with increased human life span. Dietary restriction and reduced activity of nutrient-sensing pathways may thus slow aging by similar mechanisms, which have been conserved during evolution. We discuss these findings and their potential application to prevention of age-related disease and promotion of healthy aging in humans, and the challenge of possible negative side effects.

2,522 citations


"Is there a role for carbohydrate re..." refers background in this paper

  • ...As indicated in Figure 2, restriction of dietary CHOs would counteract this signalling cascade by normalizing glucose and insulin levels in subjects with metabolic syndrome, in this way acting similar to calorie restriction/fasting [61,62]....

    [...]