scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Isolation and Characterization of a myo-inositol-1-phosphate Synthase Gene from Yellow Passion Fruit (Passiflora edulis f. flavicarpa) Expressed During Seed Development and Environmental Stress

01 Feb 2007-Annals of Botany (Oxford University Press)-Vol. 99, Iss: 2, pp 285-292
TL;DR: Experimental data suggest that PeMIPS1 transcription plays an important role in the establishment of developmental programmes and during the response of plants to environmental changes, suggesting that it is important for environmental stress response.
About: This article is published in Annals of Botany.The article was published on 2007-02-01 and is currently open access. It has received 66 citations till now. The article focuses on the topics: Gene expression & Complementary DNA.
Citations
More filters
Journal ArticleDOI
TL;DR: This study demonstrates for the first time the in vivo interference phenomenon in the pathogenic fungus Fusarium verticillioides, in which expression of an individual fungal transgene was specifically abolished by inoculating mycelial cells in transgenic tobacco plants engineered to express siRNAs from a dsRNA corresponding to the particular transgenes.
Abstract: Self-complementary RNA transcripts form a double-stranded RNA (dsRNA) that triggers a sequence-specific mRNA degradation, in a process known as RNA interference (RNAi), leading to gene silencing. In vascular plants, RNAi molecules trafficking occur between cells and systemically throughout the plant. RNAi signals can spread systemically throughout a plant, even across graft junctions from transgenic to non-transgenic stocks. There is also a great interest in applying RNAi to pathogenic fungi. Specific inhibition of gene expression by RNAi has been shown to be suitable for a multitude of phytopathogenic filamentous fungi. However, double-stranded (ds)RNA/small interfering (si)RNA silencing effect has not been observed in vivo. This study demonstrates for the first time the in vivo interference phenomenon in the pathogenic fungus Fusarium verticillioides, in which expression of an individual fungal transgene was specifically abolished by inoculating mycelial cells in transgenic tobacco plants engineered to express siRNAs from a dsRNA corresponding to the particular transgene. The results provide a powerful tool for further studies on molecular plant-microbe and symbiotic interactions. From a biotechnological perspective, silencing of fungal genes by generating siRNAs in the host provides a novel strategy for the development of broad fungi-resistance strategies in plants and other organisms.

155 citations


Cites methods from "Isolation and Characterization of a..."

  • ...PCRs were carried out as described [ 62 ], except that 20 ng of cDNA was used as a template, in reactions with 32 cycles of amplification....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors found that the expression of the sweet potato IbMIPS1 gene was induced by NaCl, polyethylene glycol (PEG), abscisic acid (ABA), and stem nematodes.
Abstract: Summary Myo-inositol-1-phosphate synthase (MIPS) is a key rate limiting enzyme in myo-inositol biosynthesis. The MIPS gene has been shown to improve tolerance to abiotic stresses in several plant species. However, its role in resistance to biotic stresses has not been reported. In this study, we found that expression of the sweet potato IbMIPS1 gene was induced by NaCl, polyethylene glycol (PEG), abscisic acid (ABA) and stem nematodes. Its overexpression significantly enhanced stem nematode resistance as well as salt and drought tolerance in transgenic sweet potato under field conditions. Transcriptome and real-time quantitative PCR analyses showed that overexpression of IbMIPS1 up-regulated the genes involved in inositol biosynthesis, phosphatidylinositol (PI) and ABA signalling pathways, stress responses, photosynthesis and ROS-scavenging system under salt, drought and stem nematode stresses. Inositol, inositol-1,4,5-trisphosphate (IP3), phosphatidic acid (PA), Ca2+, ABA, K+, proline and trehalose content was significantly increased, whereas malonaldehyde (MDA), Na+ and H2O2 content was significantly decreased in the transgenic plants under salt and drought stresses. After stem nematode infection, the significant increase of inositol, IP3, PA, Ca2+, ABA, callose and lignin content and significant reduction of MDA content were found, and a rapid increase of H2O2 levels was observed, peaked at 1 to 2 days and thereafter declined in the transgenic plants. This study indicates that the IbMIPS1 gene has the potential to be used to improve the resistance to biotic and abiotic stresses in plants.

152 citations


Cites background from "Isolation and Characterization of a..."

  • ...Myo-inositol-1-phosphate synthase is a key rate limiting enzyme of inositol biosynthesis (Abreu and Arag~ao, 2007)....

    [...]

  • ...4) is a key rate limiting enzyme of myo-inositol biosynthesis which catalyses the reaction from glucose-6-phosphate (G-6-P) to myo-inositol-1-phosphate (Ins1P), which is subsequently dephosphorylated by myo-inositol monophosphatase (MIPP) to form free inositol (Abreu and Arag~ao, 2007)....

    [...]

Journal ArticleDOI
TL;DR: A number of novel proteins were differentially expressed or appeared only in the PEG-fractionated protein samples, indicating that PEG fractionation system can be used as a versatile protein fractionation technique in proteomic analysis to identify novel or low-abundant proteins from all kinds of plant species.
Abstract: A comparative proteomic approach has been adopted in combination with physiological and biochemical analysis of tomato leaves responding to waterlogging stress. Waterlogging resulted in increases of relative ion leakage, lipid peroxidation and in vivo H2O2 content, whereas the chlorophyll content was decreased. Histocytochemical investigations with 3,3'-diaminobenzidine to localize H2O2 and Evans blue to detect dead cells suggested that oxidative stress has a significant role to leaf senescence. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the most abundant leaf protein, was successfully reduced from the samples by a fractionation method based on 15% polyethylene glycol (PEG). Elimination of Rubisco was further confirmed by Western blot analysis. To elucidate the temporal changes of the protein patterns in tomato leaves, the total soluble and the PEG-fractionated proteins were separated by two-dimensional electrophoresis (2-DE) and visualized by Coomassie Brilliant Blue staining. A total of 52 protein spots were differentially expressed, wherein 33 spots were identified by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry or electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis. The identified proteins are involved in several processes, i.e. photosynthesis, disease resistance, stress and defense mechanisms, energy and metabolism and protein biosynthesis. Results from 2-DE analysis, combined with immunoblotting clearly showed that the fragments of Rubisco large subunit were significantly degraded. This could result from a higher production of reactive oxygen species in leaves under waterlogging stress. Furthermore, four differentially accumulated proteins were analyzed at the mRNA level, confirming the differential gene expression levels and revealing that transcription levels are not always concomitant to the translation level. A number of novel proteins were differentially expressed or appeared only in the PEG-fractionated protein samples, indicating that PEG fractionation system can be used as a versatile protein fractionation technique in proteomic analysis to identify novel or low-abundant proteins from all kinds of plant species.

121 citations


Cites background from "Isolation and Characterization of a..."

  • ...MIPS catalyses the conversion of D-glucose 6-phosphate to 1-myo-inositol-1phosphate, the first and rate-limiting step in the biosynthesis of all inositol containing compounds (Abreu and Aragao 2007)....

    [...]

Journal ArticleDOI
TL;DR: Overexpression of MfMIPS1 in tobacco increased the MIPS activity and levels of myo-inositol, galactinol and raffinose, resulting in enhanced resistance to chilling, drought and salt stresses in transgenic tobacco plants.
Abstract: myo-Inositol phosphate synthase (MIPS) is the key enzyme of myo-inositol synthesis, which is a central molecule required for cell metabolism and plant growth as a precursor to a large variety of compounds. A full-length fragment of MfMIPS1 cDNA was cloned from Medicago falcata that is more cold-tolerant than Medicago sativa. While MfMIPS1 transcript was induced in response to cold, dehydration and salt stress, MIPS transcript and myo-inositol were maintained longer and at a higher level in M. falcata than in M. sativa during cold acclimation at 5 °C. MfMIPS1 transcript was induced by hydrogen peroxide (H(2) O(2)) and nitric oxide (NO), but was not responsive to abscisic acid (ABA). Pharmacological experiments revealed that H(2) O(2) and NO are involved in the regulation of MfMIPS1 expression by cold and dehydration, but not by salt. Overexpression of MfMIPS1 in tobacco increased the MIPS activity and levels of myo-inositol, galactinol and raffinose, resulting in enhanced resistance to chilling, drought and salt stresses in transgenic tobacco plants. It is suggested that MfMIPS1 is induced by diverse environmental factors and confers resistance to various abiotic stresses.

111 citations

Journal ArticleDOI
TL;DR: This study compares not only genes that are up- and down-regulated in a drought-tolerant genotype under terminal drought stress and a drought susceptible genotype but also between the bulks of the selected RILs exhibiting extreme phenotypes to provide a better insight into the selection of candidate genes associated with drought tolerance.
Abstract: Chickpea (Cicer arietinum L.) is an important grain-legume crop that is mainly grown in rainfed areas, where terminal drought is a major constraint to its productivity. We generated expressed sequence tags (ESTs) by suppression subtraction hybridization (SSH) to identify differentially expressed genes in drought-tolerant and -susceptible genotypes in chickpea. EST libraries were generated by SSH from root and shoot tissues of IC4958 (drought tolerant) and ICC 1882 (drought resistant) exposed to terminal drought conditions by the dry down method. SSH libraries were also constructed by using 2 sets of bulks prepared from the RNA of root tissues from selected recombinant inbred lines (RILs) (10 each) for the extreme high and low root biomass phenotype. A total of 3062 unigenes (638 contigs and 2424 singletons), 51.4% of which were novel in chickpea, were derived by cluster assembly and sequence alignment of 5949 ESTs. Only 2185 (71%) unigenes showed significant BLASTX similarity (<1E-06) in the NCBI non-redundant (nr) database. Gene ontology functional classification terms (BLASTX results and GO term), were retrieved for 2006 (92.0%) sequences, and 656 sequences were further annotated with 812 Enzyme Commission (EC) codes and were mapped to 108 different KEGG pathways. In addition, expression status of 830 unigenes in response to terminal drought stress was evaluated using macro-array (dot blots). The expression of few selected genes was validated by northern blotting and quantitative real-time PCR assay. Our study compares not only genes that are up- and down-regulated in a drought-tolerant genotype under terminal drought stress and a drought susceptible genotype but also between the bulks of the selected RILs exhibiting extreme phenotypes. More than 50% of the genes identified have been shown to be associated with drought stress in chickpea for the first time. This study not only serves as resource for marker discovery, but can provide a better insight into the selection of candidate genes (both up- and downregulated) associated with drought tolerance. These results can be used to identify suitable targets for manipulating the drought-tolerance trait in chickpea.

94 citations

References
More filters
Journal ArticleDOI
TL;DR: The sensitivity of the commonly used progressive multiple sequence alignment method has been greatly improved and modifications are incorporated into a new program, CLUSTAL W, which is freely available.
Abstract: The sensitivity of the commonly used progressive multiple sequence alignment method has been greatly improved for the alignment of divergent protein sequences. Firstly, individual weights are assigned to each sequence in a partial alignment in order to down-weight near-duplicate sequences and up-weight the most divergent ones. Secondly, amino acid substitution matrices are varied at different alignment stages according to the divergence of the sequences to be aligned. Thirdly, residue-specific gap penalties and locally reduced gap penalties in hydrophilic regions encourage new gaps in potential loop regions rather than regular secondary structure. Fourthly, positions in early alignments where gaps have been opened receive locally reduced gap penalties to encourage the opening up of new gaps at these positions. These modifications are incorporated into a new program, CLUSTAL W which is freely available.

63,427 citations


"Isolation and Characterization of a..." refers methods in this paper

  • ...The alignment was performed using CLUSTAL W (Thompson et al., 1994)....

    [...]

Journal ArticleDOI
TL;DR: The neighbor-joining method and Sattath and Tversky's method are shown to be generally better than the other methods for reconstructing phylogenetic trees from evolutionary distance data.
Abstract: A new method called the neighbor-joining method is proposed for reconstructing phylogenetic trees from evolutionary distance data. The principle of this method is to find pairs of operational taxonomic units (OTUs [= neighbors]) that minimize the total branch length at each stage of clustering of OTUs starting with a starlike tree. The branch lengths as well as the topology of a parsimonious tree can quickly be obtained by using this method. Using computer simulation, we studied the efficiency of this method in obtaining the correct unrooted tree in comparison with that of five other tree-making methods: the unweighted pair group method of analysis, Farris's method, Sattath and Tversky's method, Li's method, and Tateno et al.'s modified Farris method. The new, neighbor-joining method and Sattath and Tversky's method are shown to be generally better than the other methods.

57,055 citations


"Isolation and Characterization of a..." refers methods in this paper

  • ...Phylogenetic trees were then constructed using the neighbour-joining algorithm (Saitou and Nei, 1987)....

    [...]

Journal ArticleDOI
TL;DR: Some examples were worked out using reported globin sequences to show that synonymous substitutions occur at much higher rates than amino acid-altering substitutions in evolution.
Abstract: Some simple formulae were obtained which enable us to estimate evolutionary distances in terms of the number of nucleotide substitutions (and, also, the evolutionary rates when the divergence times are known). In comparing a pair of nucleotide sequences, we distinguish two types of differences; if homologous sites are occupied by different nucleotide bases but both are purines or both pyrimidines, the difference is called type I (or “transition” type), while, if one of the two is a purine and the other is a pyrimidine, the difference is called type II (or “transversion” type). Letting P and Q be respectively the fractions of nucleotide sites showing type I and type II differences between two sequences compared, then the evolutionary distance per site is K = — (1/2) ln {(1 — 2P — Q) }. The evolutionary rate per year is then given by k = K/(2T), where T is the time since the divergence of the two sequences. If only the third codon positions are compared, the synonymous component of the evolutionary base substitutions per site is estimated by K'S = — (1/2) ln (1 — 2P — Q). Also, formulae for standard errors were obtained. Some examples were worked out using reported globin sequences to show that synonymous substitutions occur at much higher rates than amino acid-altering substitutions in evolution.

26,016 citations


"Isolation and Characterization of a..." refers methods in this paper

  • ...Thus, to consider this unequal probability of the substitution types, the Kimura 2-parameter (Kimura, 1980) was used to compute distances between each pair of sequences....

    [...]

Journal ArticleDOI
TL;DR: An overview of the statistical methods, computational tools, and visual exploration modules for data input and the results obtainable in MEGA is provided.
Abstract: With its theoretical basis firmly established in molecular evolutionary and population genetics, the comparative DNA and protein sequence analysis plays a central role in reconstructing the evolutionary histories of species and multigene families, estimating rates of molecular evolution, and inferring the nature and extent of selective forces shaping the evolution of genes and genomes. The scope of these investigations has now expanded greatly owing to the development of high-throughput sequencing techniques and novel statistical and computational methods. These methods require easy-to-use computer programs. One such effort has been to produce Molecular Evolutionary Genetics Analysis (MEGA) software, with its focus on facilitating the exploration and analysis of the DNA and protein sequence variation from an evolutionary perspective. Currently in its third major release, MEGA3 contains facilities for automatic and manual sequence alignment, web-based mining of databases, inference of the phylogenetic trees, estimation of evolutionary distances and testing evolutionary hypotheses. This paper provides an overview of the statistical methods, computational tools, and visual exploration modules for data input and the results obtainable in MEGA.

12,124 citations


"Isolation and Characterization of a..." refers methods in this paper

  • ...Phylogenetic analyses were carried out using the MEGA (Molecular Evolutionary Genetic Analysis) version 3.1 software program (Kumar et al., 2004)....

    [...]

Journal ArticleDOI
TL;DR: A neural network-based tool, TargetP, for large-scale subcellular location prediction of newly identified proteins has been developed and it is estimated that 10% of all plant proteins are mitochondrial and 14% chloroplastic, and that the abundance of secretory proteins, in both Arabidopsis and Homo, is around 10%.

4,268 citations


"Isolation and Characterization of a..." refers background in this paper

  • ...The TargetP 1.1 (Emanuelsson et al., 2000) and ChloroP (Emanuelsson et al., 1999) program algorithms predicted no signal, chloroplast transit or mitochondrial targeting peptides in the N-terminal region of the PeMIPS1....

    [...]

Related Papers (5)