scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Isolation and Characterization of a myo-inositol-1-phosphate Synthase Gene from Yellow Passion Fruit (Passiflora edulis f. flavicarpa) Expressed During Seed Development and Environmental Stress

01 Feb 2007-Annals of Botany (Oxford University Press)-Vol. 99, Iss: 2, pp 285-292
TL;DR: Experimental data suggest that PeMIPS1 transcription plays an important role in the establishment of developmental programmes and during the response of plants to environmental changes, suggesting that it is important for environmental stress response.
About: This article is published in Annals of Botany.The article was published on 2007-02-01 and is currently open access. It has received 66 citations till now. The article focuses on the topics: Gene expression & Complementary DNA.
Citations
More filters
Journal ArticleDOI
TL;DR: This study demonstrates for the first time the in vivo interference phenomenon in the pathogenic fungus Fusarium verticillioides, in which expression of an individual fungal transgene was specifically abolished by inoculating mycelial cells in transgenic tobacco plants engineered to express siRNAs from a dsRNA corresponding to the particular transgenes.
Abstract: Self-complementary RNA transcripts form a double-stranded RNA (dsRNA) that triggers a sequence-specific mRNA degradation, in a process known as RNA interference (RNAi), leading to gene silencing. In vascular plants, RNAi molecules trafficking occur between cells and systemically throughout the plant. RNAi signals can spread systemically throughout a plant, even across graft junctions from transgenic to non-transgenic stocks. There is also a great interest in applying RNAi to pathogenic fungi. Specific inhibition of gene expression by RNAi has been shown to be suitable for a multitude of phytopathogenic filamentous fungi. However, double-stranded (ds)RNA/small interfering (si)RNA silencing effect has not been observed in vivo. This study demonstrates for the first time the in vivo interference phenomenon in the pathogenic fungus Fusarium verticillioides, in which expression of an individual fungal transgene was specifically abolished by inoculating mycelial cells in transgenic tobacco plants engineered to express siRNAs from a dsRNA corresponding to the particular transgene. The results provide a powerful tool for further studies on molecular plant-microbe and symbiotic interactions. From a biotechnological perspective, silencing of fungal genes by generating siRNAs in the host provides a novel strategy for the development of broad fungi-resistance strategies in plants and other organisms.

155 citations


Cites methods from "Isolation and Characterization of a..."

  • ...PCRs were carried out as described [ 62 ], except that 20 ng of cDNA was used as a template, in reactions with 32 cycles of amplification....

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors found that the expression of the sweet potato IbMIPS1 gene was induced by NaCl, polyethylene glycol (PEG), abscisic acid (ABA), and stem nematodes.
Abstract: Summary Myo-inositol-1-phosphate synthase (MIPS) is a key rate limiting enzyme in myo-inositol biosynthesis. The MIPS gene has been shown to improve tolerance to abiotic stresses in several plant species. However, its role in resistance to biotic stresses has not been reported. In this study, we found that expression of the sweet potato IbMIPS1 gene was induced by NaCl, polyethylene glycol (PEG), abscisic acid (ABA) and stem nematodes. Its overexpression significantly enhanced stem nematode resistance as well as salt and drought tolerance in transgenic sweet potato under field conditions. Transcriptome and real-time quantitative PCR analyses showed that overexpression of IbMIPS1 up-regulated the genes involved in inositol biosynthesis, phosphatidylinositol (PI) and ABA signalling pathways, stress responses, photosynthesis and ROS-scavenging system under salt, drought and stem nematode stresses. Inositol, inositol-1,4,5-trisphosphate (IP3), phosphatidic acid (PA), Ca2+, ABA, K+, proline and trehalose content was significantly increased, whereas malonaldehyde (MDA), Na+ and H2O2 content was significantly decreased in the transgenic plants under salt and drought stresses. After stem nematode infection, the significant increase of inositol, IP3, PA, Ca2+, ABA, callose and lignin content and significant reduction of MDA content were found, and a rapid increase of H2O2 levels was observed, peaked at 1 to 2 days and thereafter declined in the transgenic plants. This study indicates that the IbMIPS1 gene has the potential to be used to improve the resistance to biotic and abiotic stresses in plants.

152 citations


Cites background from "Isolation and Characterization of a..."

  • ...Myo-inositol-1-phosphate synthase is a key rate limiting enzyme of inositol biosynthesis (Abreu and Arag~ao, 2007)....

    [...]

  • ...4) is a key rate limiting enzyme of myo-inositol biosynthesis which catalyses the reaction from glucose-6-phosphate (G-6-P) to myo-inositol-1-phosphate (Ins1P), which is subsequently dephosphorylated by myo-inositol monophosphatase (MIPP) to form free inositol (Abreu and Arag~ao, 2007)....

    [...]

Journal ArticleDOI
TL;DR: A number of novel proteins were differentially expressed or appeared only in the PEG-fractionated protein samples, indicating that PEG fractionation system can be used as a versatile protein fractionation technique in proteomic analysis to identify novel or low-abundant proteins from all kinds of plant species.
Abstract: A comparative proteomic approach has been adopted in combination with physiological and biochemical analysis of tomato leaves responding to waterlogging stress. Waterlogging resulted in increases of relative ion leakage, lipid peroxidation and in vivo H2O2 content, whereas the chlorophyll content was decreased. Histocytochemical investigations with 3,3'-diaminobenzidine to localize H2O2 and Evans blue to detect dead cells suggested that oxidative stress has a significant role to leaf senescence. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the most abundant leaf protein, was successfully reduced from the samples by a fractionation method based on 15% polyethylene glycol (PEG). Elimination of Rubisco was further confirmed by Western blot analysis. To elucidate the temporal changes of the protein patterns in tomato leaves, the total soluble and the PEG-fractionated proteins were separated by two-dimensional electrophoresis (2-DE) and visualized by Coomassie Brilliant Blue staining. A total of 52 protein spots were differentially expressed, wherein 33 spots were identified by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry or electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis. The identified proteins are involved in several processes, i.e. photosynthesis, disease resistance, stress and defense mechanisms, energy and metabolism and protein biosynthesis. Results from 2-DE analysis, combined with immunoblotting clearly showed that the fragments of Rubisco large subunit were significantly degraded. This could result from a higher production of reactive oxygen species in leaves under waterlogging stress. Furthermore, four differentially accumulated proteins were analyzed at the mRNA level, confirming the differential gene expression levels and revealing that transcription levels are not always concomitant to the translation level. A number of novel proteins were differentially expressed or appeared only in the PEG-fractionated protein samples, indicating that PEG fractionation system can be used as a versatile protein fractionation technique in proteomic analysis to identify novel or low-abundant proteins from all kinds of plant species.

121 citations


Cites background from "Isolation and Characterization of a..."

  • ...MIPS catalyses the conversion of D-glucose 6-phosphate to 1-myo-inositol-1phosphate, the first and rate-limiting step in the biosynthesis of all inositol containing compounds (Abreu and Aragao 2007)....

    [...]

Journal ArticleDOI
TL;DR: Overexpression of MfMIPS1 in tobacco increased the MIPS activity and levels of myo-inositol, galactinol and raffinose, resulting in enhanced resistance to chilling, drought and salt stresses in transgenic tobacco plants.
Abstract: myo-Inositol phosphate synthase (MIPS) is the key enzyme of myo-inositol synthesis, which is a central molecule required for cell metabolism and plant growth as a precursor to a large variety of compounds. A full-length fragment of MfMIPS1 cDNA was cloned from Medicago falcata that is more cold-tolerant than Medicago sativa. While MfMIPS1 transcript was induced in response to cold, dehydration and salt stress, MIPS transcript and myo-inositol were maintained longer and at a higher level in M. falcata than in M. sativa during cold acclimation at 5 °C. MfMIPS1 transcript was induced by hydrogen peroxide (H(2) O(2)) and nitric oxide (NO), but was not responsive to abscisic acid (ABA). Pharmacological experiments revealed that H(2) O(2) and NO are involved in the regulation of MfMIPS1 expression by cold and dehydration, but not by salt. Overexpression of MfMIPS1 in tobacco increased the MIPS activity and levels of myo-inositol, galactinol and raffinose, resulting in enhanced resistance to chilling, drought and salt stresses in transgenic tobacco plants. It is suggested that MfMIPS1 is induced by diverse environmental factors and confers resistance to various abiotic stresses.

111 citations

Journal ArticleDOI
TL;DR: This study compares not only genes that are up- and down-regulated in a drought-tolerant genotype under terminal drought stress and a drought susceptible genotype but also between the bulks of the selected RILs exhibiting extreme phenotypes to provide a better insight into the selection of candidate genes associated with drought tolerance.
Abstract: Chickpea (Cicer arietinum L.) is an important grain-legume crop that is mainly grown in rainfed areas, where terminal drought is a major constraint to its productivity. We generated expressed sequence tags (ESTs) by suppression subtraction hybridization (SSH) to identify differentially expressed genes in drought-tolerant and -susceptible genotypes in chickpea. EST libraries were generated by SSH from root and shoot tissues of IC4958 (drought tolerant) and ICC 1882 (drought resistant) exposed to terminal drought conditions by the dry down method. SSH libraries were also constructed by using 2 sets of bulks prepared from the RNA of root tissues from selected recombinant inbred lines (RILs) (10 each) for the extreme high and low root biomass phenotype. A total of 3062 unigenes (638 contigs and 2424 singletons), 51.4% of which were novel in chickpea, were derived by cluster assembly and sequence alignment of 5949 ESTs. Only 2185 (71%) unigenes showed significant BLASTX similarity (<1E-06) in the NCBI non-redundant (nr) database. Gene ontology functional classification terms (BLASTX results and GO term), were retrieved for 2006 (92.0%) sequences, and 656 sequences were further annotated with 812 Enzyme Commission (EC) codes and were mapped to 108 different KEGG pathways. In addition, expression status of 830 unigenes in response to terminal drought stress was evaluated using macro-array (dot blots). The expression of few selected genes was validated by northern blotting and quantitative real-time PCR assay. Our study compares not only genes that are up- and down-regulated in a drought-tolerant genotype under terminal drought stress and a drought susceptible genotype but also between the bulks of the selected RILs exhibiting extreme phenotypes. More than 50% of the genes identified have been shown to be associated with drought stress in chickpea for the first time. This study not only serves as resource for marker discovery, but can provide a better insight into the selection of candidate genes (both up- and downregulated) associated with drought tolerance. These results can be used to identify suitable targets for manipulating the drought-tolerance trait in chickpea.

94 citations

References
More filters
Journal ArticleDOI
Jinrui Shi1, Hongyu Wang1, Jan Hazebroek1, David S. Ertl1, Teresa Harp1 
TL;DR: The maize lpa3 mutant as mentioned in this paper showed that MIK is not a salvage enzyme for myo-inositol recycling and that there are multiple phosphorylation routes to phytic acid in developing seeds.
Abstract: *Summary Phytic acid, myo-inositol-1,2,3,4,5,6-hexakis phosphate or Ins P 6, is the most abundant myo-inositol phosphate in plant cells, but its biosynthesis is poorly understood. Also uncertain is the role of myo-inositol as a precursor of phytic acid biosynthesis. We identified a low-phytic acid mutant, lpa3, in maize. The Mu-insertion mutant has a phenotype of reduced phytic acid, increased myo-inositol and lacks significant amounts of myo-inositol phosphate intermediates in seeds. The gene responsible for the mutation encodes a myo-inositol kinase (MIK). Maize MIK protein contains conserved amino acid residues found in pfkB carbohydrate kinases. The maize lpa3 gene is expressed in developing embryos, where phytic acid is actively synthesized and accumulates to a large amount. Characterization of the lpa3 mutant provides direct evidence for the role of myo-inositol and MIK in phytic acid biosynthesis in developing seeds. Recombinant maize MIK phosphorylates myo-inositol to produce multiple myo-inositol monophosphates, Ins(1/3)P, Ins(4/6)P and possibly Ins(5)P. The characteristics of the lpa3 mutant and MIK suggest that MIK is not a salvage enzyme for myo-inositol recycling and that there are multiple phosphorylation routes to phytic acid in developing seeds. Analysis of the lpa2/lpa3 double mutant implies interactions between the phosphorylation routes.

204 citations

Journal ArticleDOI
TL;DR: In baker's yeast, Saccharomyces cerevisiae, the transcriptional regulation of the INO1 gene has been studied in detail and its expression is sensitive to the availability of phospholipid precursors as well as growth phase.

198 citations


"Isolation and Characterization of a..." refers background in this paper

  • ...This demonstrated that the expression of the PeMIPS1 gene is organ specific and such differential regulation would coordinate inositol metabolism with cellular growth (Ishitani et al., 1996; Majumder et al., 1997)....

    [...]

  • ...Inositol is a negative feedback inhibitor of this conversion (Majumder et al., 1997)....

    [...]

Journal ArticleDOI
TL;DR: The temporal and spatial patterns of accumulation of the RINO1 transcript and globoids suggest that I(1)P synthase directs phytin biosynthesis in rice seeds.
Abstract: Myo-inositol-1-phosphate (I[1]P) synthase (EC 5.5.1.4) catalyzes the reaction from glucose 6-phosphate to I(1)P, the first step of myo-inositol biosynthesis. Among the metabolites of I(1)P is inositol hexakisphosphate, which forms a mixed salt called phytin or phytate, a storage form of phosphate and cations in seeds. We have isolated a rice (Oryza sativa L.) cDNA clone, pRINO1, that is highly homologous to the I(1)P synthase from yeast and plants. Northern analysis of total RNA showed that the transcript accumulated to high levels in embryos but was undetectable in shoots, roots, and flowers. In situ hybridization of developing seeds showed that the transcript first appeared in the apical region of globular-stage embryos 2 d after anthesis (DAA). Strong signals were detected in the scutellum and aleurone layer after 4 DAA. The level of the transcript in these cells increased until 7 DAA, after which time it gradually decreased. Phytin-containing particles called globoids appeared 4 DAA in the scutellum and aleurone layer, coinciding with the localization of the RINO1 transcript. The temporal and spatial patterns of accumulation of the RINO1 transcript and globoids suggest that I(1)P synthase directs phytin biosynthesis in rice seeds.

164 citations


"Isolation and Characterization of a..." refers background in this paper

  • ...In rice, genomic Southern analysis suggested that a single gene encoding the RINO1 gene was present in the genome (Yoshida et al., 1999)....

    [...]

  • ...In rice, transcripts of an MIPS-encoding gene (RINO1) accumulated at high levels in developing seeds, but not in leaves, roots or flowers (Yoshida et al., 1999)....

    [...]

Journal ArticleDOI
04 Jan 2006-Planta
TL;DR: The results demonstrated an important correlation between GmMIPS1 gene expression and seed development and a drastic reduction of phytate (InsP6) content was achieved in transgenic lines (up to 94.5%).
Abstract: Inositol plays a role in membrane trafficking and signaling in addition to regulating cellular metabolism and controlling growth. In plants, the myo-inositol-1-phosphate is synthesized from glucose 6-phosphate in a reaction catalyzed by the enzyme myo-inositol-1-phosphate synthase (EC 5.5.1.4). Inositol can be converted into phytic acid (phytate), the most abundant form of phosphate in seeds. The path to phytate has been suggested to proceed via the sequential phosphorylation of inositol phosphates, and/or in part via phosphatidylinositol phosphate. Soybean [Glycine max (L.) Merrill] lines were produced using interfering RNA (RNAi) construct in order to silence the myo-inositol-1-phosphate (GmMIPS1) gene. We have observed an absence of seed development in lines in which the presence of GmMIPS1 transcripts was not detected. In addition, a drastic reduction of phytate (InsP6) content was achieved in transgenic lines (up to 94.5%). Our results demonstrated an important correlation between GmMIPS1 gene expression and seed development.

157 citations

Related Papers (5)