scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Isolation and characterization of a new CO-utilizing strain, Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans, isolated from a geothermal spring in Turkey

TL;DR: Strain TLO has the capability to ferment a wide variety of mono-, di-, and polysaccharides and proteinaceous substrates, producing mainly lactate, next to acetate, ethanol, alanine, H2, and CO2 and was able to grow in an atmosphere of up to 25% of CO as sole electron donor.
Abstract: A novel anaerobic, thermophilic, Gram-positive, spore-forming, and sugar-fermenting bacterium (strain TLO) was isolated from a geothermal spring in Ayas, Turkey. The cells were straight to curved rods, 0.4–0.6 μm in diameter and 3.5–10 μm in length. Spores were terminal and round. The temperature range for growth was 40–80°C, with an optimum at 70°C. The pH optimum was between 6.3 and 6.8. Strain TLO has the capability to ferment a wide variety of mono-, di-, and polysaccharides and proteinaceous substrates, producing mainly lactate, next to acetate, ethanol, alanine, H2, and CO2. Remarkably, the bacterium was able to grow in an atmosphere of up to 25% of CO as sole electron donor. CO oxidation was coupled to H2 and CO2 formation. The G + C content of the genomic DNA was 35.1 mol%. Based on 16S rRNA gene sequence analysis and the DNA–DNA hybridization data, this bacterium is most closely related to Thermoanaerobacter thermohydrosulfuricus and Thermoanaerobacter siderophilus (99% similarity for both). However, strain TLO differs from Thermoanaerobacter thermohydrosulfuricus in important aspects, such as CO-utilization and lipid composition. These differences led us to propose that strain TLO represents a subspecies of Thermoanaerobacter thermohydrosulfuricus, and we therefore name it Thermoanaerobacter thermohydrosulfuricus subsp. carboxydovorans.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: It is proposed that strain E3-O(T) should be classified in the genus Moorella as a representative of a novel species, Moorella stamsii, which has the ability to ferment various sugars and grow with CO as the sole carbon and energy source.
Abstract: A novel anaerobic, thermophilic, carbon monoxide-utilizing bacterium, strain E3-OT, was isolated from anaerobic sludge from a municipal solid waste digester. Cells were straight rods, 0.6–1 µm in diameter and 2–3 µm in length and grew as single cells or in pairs. Cells formed round terminal endospores. The temperature range for growth was 50–70 °C, with an optimum at 65 °C. The pH range for growth was 5.7–8.0, with an optimum at 7.5. Strain E3-OT had the ability to ferment various sugars, such as fructose, galactose, glucose, mannose, raffinose, ribose, sucrose and xylose, producing mainly H2 and acetate. In addition, the isolate was able to grow with CO as the sole carbon and energy source. CO oxidation was coupled to H2 and CO2 formation. The G+C content of the genomic DNA was 54.6 mol%. Based on 16S rRNA gene sequence analysis, this bacterium is most closely related to Moorella glycerini (97 % sequence identity). Based on the physiological features and phylogenetic analysis, it is proposed that strain E3-OT should be classified in the genus Moorella as a representative of a novel species, Moorella stamsii. The type strain of Moorella stamsii is E3-OT ( = DSM 26271T = CGMCC 1.5181T).

48 citations


Cites methods from "Isolation and characterization of a..."

  • ...425 bar) and using the procedure previously described by Balk et al. (2009)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the A7 sample showed the highest activity among all the mixed cultures screened, growing under 50 to 80°C, 5 to 35 g L − 1 NaCl and 0.8 to 14.2 MPa pressure.

40 citations

Journal ArticleDOI
TL;DR: In this paper, an overview on the possible biotechnological uses of the biologically mediated water-gas shift (WGS) reaction is presented, focusing mainly on the fundamental characterization of the CODH enzyme.
Abstract: Among the possible renewable energies sources, biomass gasification has been considered one promising alternative to meet the daily growing energy demand. The outcome of this process is a synthetic gas (syngas) mainly composed of carbon monoxide and hydrogen. Syngas can be upgraded by a group of anaerobic micro-organisms, thanks to the biologically mediated water–gas shift (WGS) reaction. In this process, the conversion of CO and H2O into CO2 and H2 is catalyzed by two enzymes: carbon monoxide dehydrogenase (CODH) and hydrogenase. In order to efficiently use micro-organisms as a cost effective and environmentally friendly technology, it is fundamental to deeply understand how this process occurs. In this review paper, an overview on the possible biotechnological uses of the WGS reaction is presented, focusing mainly on the fundamental characterization of the CODH enzyme.

33 citations

Journal ArticleDOI
TL;DR: An extremely thermophilic, xylanolytic, spore-forming and strictly anaerobic bacterium, strain DTU01(T), was isolated from a continuously stirred tank reactor fed with xylose and household waste and was shown to be closely related to Thermoanaerobacter mathranii A3(T) andThermoanaeobacter italicus Ab9(T); with 98-99 % similarity.
Abstract: An extremely thermophilic, xylanolytic, spore-forming and strictly anaerobic bacterium, strain DTU01T, was isolated from a continuously stirred tank reactor fed with xylose and household waste. Cells stained Gram-negative and were rod-shaped (0.5–2 µm in length). Spores were terminal with a diameter of approximately 0.5 µm. Optimal growth occurred at 70 °C and pH 7, with a maximum growth rate of 0.1 h−1. DNA G+C content was 34.2 mol%. Strain DTU01T could ferment arabinose, cellobiose, fructose, galactose, glucose, lactose, mannitol, mannose, melibiose, pectin, starch, sucrose, xylan, yeast extract and xylose, but not cellulose, Avicel, inositol, inulin, glycerol, rhamnose, acetate, lactate, ethanol, butanol or peptone. Ethanol was the major fermentation product and a maximum yield of 1.39 mol ethanol per mol xylose was achieved when sulfite was added to the cultivation medium. Thiosulfate, but not sulfate, nitrate or nitrite, could be used as electron acceptor. On the basis of 16S rRNA gene sequence similarity, strain DTU01T was shown to be closely related to Thermoanaerobacter mathranii A3T, Thermoanaerobacter italicus Ab9T and Thermoanaerobacter thermocopriae JT3-3T, with 98–99 % similarity. Despite this, the physiological and phylogenetic differences (DNA G+C content, substrate utilization, electron acceptors, phylogenetic distance and isolation site) allow for the proposal of strain DTU01T as a representative of a novel species within the genus Thermoanaerobacter , for which the name Thermoanaerobacter pentosaceus sp. nov. is proposed, with the type strain DTU01T ( = DSM 25963T = KCTC 4529T = VKM B-2752T = CECT 8142T).

29 citations


Cites background from "Isolation and characterization of a..."

  • ...…acids were detected. iso-Diabolic acid, an unusual, very long (C32) dimethyl dicarboxylic acid, which has been identified as the most abundant transmembrane fatty acid in some thermophilic strains (Balk et al., 2009; Jung et al., 1994; Lee et al., 2002), has not been detected in strain DTU01T....

    [...]

  • ...iso-Diabolic acid, an unusual, very long (C32) dimethyl dicarboxylic acid, which has been identified as the most abundant transmembrane fatty acid in some thermophilic strains (Balk et al., 2009; Jung et al., 1994; Lee et al., 2002), has not been detected in strain DTU01....

    [...]

Book ChapterDOI
Yuto Fukuyama1, Masao Inoue1, Kimiho Omae1, Takashi Yoshida1, Yoshihiko Sako1 
TL;DR: Recent advances in the studies of CO oxidizers are reviewed, which reveal their unique and versatile metabolic profiles and provides future perspectives on ecological roles and biotechnological applications.
Abstract: Carbon monoxide (CO) is a gas that is toxic to various organisms including humans and even microbes; however, it has low redox potential, which can fuel certain microbes, namely, CO oxidizers. Hydrogenogenic CO oxidizers utilize an energy conservation system via a CO dehydrogenase/energy-converting hydrogenase complex to produce hydrogen gas, a zero emission fuel, by CO oxidation coupled with proton reduction. Biochemical and molecular biological studies using a few model organisms have revealed their enzymatic reactions and transcriptional response mechanisms using CO. Biotechnological studies for CO-dependent hydrogen production have also been carried out with these model organisms. In this chapter, we review recent advances in the studies of these microbes, which reveal their unique and versatile metabolic profiles and provides future perspectives on ecological roles and biotechnological applications. Over the past decade, the number of isolates has doubled (37 isolates in 5 phyla, 20 genera, and 32 species). Some of the recently isolated ones show broad specificity to electron acceptors. Moreover, accumulating genomic information predicts their unique physiologies and reveals their phylogenomic relationships with novel potential hydrogenogenic CO oxidizers. Combined with genomic database surveys, a molecular ecological study has unveiled the wide distribution and low abundance of these microbes. Finally, recent biotechnological applications of hydrogenogenic CO oxidizers have been achieved via diverse approaches (e.g., metabolic engineering and co-cultivation), and the identification of thermophilic facultative anaerobic CO oxidizers will promote industrial applications as oxygen-tolerant biocatalysts for efficient hydrogen production by genomic engineering.

27 citations

References
More filters
Journal ArticleDOI
TL;DR: This assay is very reproducible and rapid with the dye binding process virtually complete in approximately 2 min with good color stability for 1 hr with little or no interference from cations such as sodium or potassium nor from carbohydrates such as sucrose.

225,085 citations


"Isolation and characterization of a..." refers methods in this paper

  • ...The protein content of the cell extracts was determined according to the method of Bradford (1976) with bovine serum albumin as a standard....

    [...]

01 Jan 1991

10,143 citations


"Isolation and characterization of a..." refers methods in this paper

  • ...PCR was performed with the bacterial primers 7f and 1510r (Lane 1991) by using the Taq DNA polymerase kit (Life Technologies) to amplify the bacterial 16S rRNA gene....

    [...]

Journal ArticleDOI
TL;DR: The ARB program package comprises a variety of directly interacting software tools for sequence database maintenance and analysis which are controlled by a common graphical user interface.
Abstract: The ARB (from Latin arbor, tree) project was initiated almost 10 years ago. The ARB program package comprises a variety of directly interacting software tools for sequence database maintenance and analysis which are controlled by a common graphical user interface. Although it was initially designed for ribosomal RNA data, it can be used for any nucleic and amino acid sequence data as well. A central database contains processed (aligned) primary structure data. Any additional descriptive data can be stored in database fields assigned to the individual sequences or linked via local or worldwide networks. A phylogenetic tree visualized in the main window can be used for data access and visualization. The package comprises additional tools for data import and export, sequence alignment, primary and secondary structure editing, profile and filter calculation, phylogenetic analyses, specific hybridization probe design and evaluation and other components for data analysis. Currently, the package is used by numerous working groups worldwide.

6,757 citations

Book
01 Jan 1991
TL;DR: Isolation and purification of nucleic acids DNA reassociation experiments DNA-rRNA hybridization and methods DNA sequencing in bacterial systematics direct sequence analysis of small RNAs 16S/23S rRNA sequencing the polymerase chain reaction development and application of nucleics acid probes DNA fingerprinting from macromolecules to trees.
Abstract: Isolation and purification of nucleic acids DNA reassociation experiments DNA-rRNA hybridization and methods DNA sequencing in bacterial systematics direct sequence analysis of small RNAs 16S/23S rRNA sequencing the polymerase chain reaction development and application of nucleic acid probes DNA fingerprinting from macromolecules to trees.

5,198 citations


"Isolation and characterization of a..." refers methods in this paper

  • ...PCR was performed with the bacterial primers 7f and 1510r (Lane 1991) by using the Taq DNA polymerase kit (Life Technologies) to amplify the bacterial 16S rRNA gene....

    [...]

  • ...The use of the electron acceptors was examined by following the optical density (600 nm) of the culture, detection of sulfide production (for sulfate, thiosulfate, sulfite and elemental sulfur), change of visible color (for AQDS) and measurements of the reduction of Fe(III) or formation of a…...

    [...]

Journal ArticleDOI
TL;DR: High-performance liquid chromatography is a promising alternative for determining the G+C content of bacterial deoxyribonucleic acid (DNA) and may also be more accurate than indirect methods, such as the buoyant density and thermal denaturation methods.
Abstract: High-performance liquid chromatography is a promising alternative for determining the G+C content of bacterial deoxyribonucleic acid (DNA). The method which we evaluated involves enzymatic degradation of the DNA to nucleosides by P1 nuclease and bovine intestinal mucosa alkaline phosphatase, separation of the nucleosides by high-performance liquid chromatography, and calculation of the G+C content from the apparent ratios of deoxyguanosine and thymidine. Because the nucleosides are released from the DNA at different rates, incomplete degradation produces large errors in the apparent G+C content. For partially purified DNA, salts are a major source of interference in degradation. However, when the salts are carefully removed, the preparation and degradation of DNA contribute little error to the determination of G+C content. This method also requires careful selection of the chromatographic conditions to ensure separation of the major nucleosides from the nucleosides of modified bases and precise control of the flow rates. Both of these conditions are achievable with standard equipment and C18 reversed-phase columns. Then the method is precise, and the relative standard deviations of replicate measurements are close to 0.1%. It is also rapid, and a single measurement requires about 15 min. It requires small amounts of sample, and the G+C content can be determined from DNA isolated from a single bacterial colony. It is not affected by contamination with ribonucleic acid. Because this method yields a direct measurement, it may also be more accurate than indirect methods, such as the buoyant density and thermal denaturation methods. In addition, for highly purified DNA, the extent of modification can be determined.

4,685 citations


"Isolation and characterization of a..." refers methods in this paper

  • ...C content of strain TLO was determined using the HPLC method described by Mesbah et al. (1989); unmethylated lambda DNA (Sigma) was used as the standard....

    [...]

Related Papers (5)