scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Isolation of Luteolin and Luteolin-7-O-glucoside from Dendranthema morifolium Ramat Tzvel and Their Pharmacokinetics in Rats.

TL;DR: Luteolin-7-O-glucoside is primarily hydrolyzed to luteolin in the gastrointestinal tract and then absorbed into the systemic circulation and the pharmacokinetic data demonstrate that the areas under the concentration curves (AUCs) of lutenolin were 261 ± 33 and 611 ± 89 after luteol administration.
Abstract: Luteolin and luteolin-7-O-glucoside were isolated from the ethanolic extract of Dendranthema morifolium Ramat Tzvel. The structures of these analytes were identified by nuclear magnetic resonance ((1)H and (13)C NMR) and mass spectrometry. Ethanolic and water extracts contained luteolin-7-O-glucoside at 4.19 and 6.56%, respectively. However, the level of luteolin was only 0.19% in the ethanolic extract, and luteolin was not detected in the water extract. To examine the pharmacokinetics and bioavailability of luteolin and luteolin-7-O-glucoside in rats, parallel studies of luteolin (10 mg/kg, iv; and 100 mg/kg, po) and luteolin-7-O-glucoside (10 mg/kg, iv; and 1 g/kg, po) were conducted. The analytes were detected by high-performance liquid chromatography coupled with a photodiode array detector. A phenyl-hexyl (150 × 4.6 mm iv; 5.0 μm) column was used to separate the analytes from the biological samples. The pharmacokinetic data demonstrate that the areas under the concentration curves (AUCs) of luteolin were 261 ± 33 and 611 ± 89 (min μg/mL) after luteolin administration (10 mg/kg, iv; and 100 mg/kg, po, respectively). The oral bioavailability of luteolin was 26 ± 6%. The AUCs of luteolin-7-O-glucoside were 229 ± 15 and 2109 ± 350 (min μg/mL) after administration of luteolin-7-O-glucoside (10 mg/kg, iv; and 1 g/kg, po, respectively). The oral bioavailability of luteolin-7-O-glucoside was approximately 10 ± 2%. In the group that received luteolin-7-O-glucoside orally, a biotransformed luteolin product was detected, but this product was not detected in the group that received luteolin-7-O-glucoside intravenously. The biotransformation ratio of luteolin to luteolin-7-O-glucoside (the AUC ratio of metabolite/parent compound) was approximately 48.78 ± 0.12%. These results demonstrate that luteolin-7-O-glucoside is primarily hydrolyzed to luteolin in the gastrointestinal tract and then absorbed into the systemic circulation.
Citations
More filters
Journal ArticleDOI
TL;DR: The available literature regarding the neuroprotective effects of luteolin, its herbal sources, and bioavailability as a pharmacological agent for the treatment and management of age-related neurodegenerative disorders are reviewed.

295 citations

Journal ArticleDOI
TL;DR: It is shown that luteolin inhibits the replication of all four serotypes of d Dengue virus, but the selectivity of the inhibition was weak, and it is possible that it can be tested in combination with other dengue virus inhibitors.

85 citations

Journal ArticleDOI
TL;DR: The activity of the flavonoid luteolin is evaluated for mucosal damage caused by cancer treatment, which has never been tested for this purpose despite its biological potential.
Abstract: Background and purpose Intestinal mucositis refers to mucosal damage caused by cancer treatment, and irinotecan is one of the agents most associated with this condition. Focusing on the development of alternatives to prevent this important adverse effect, we evaluated the activity of the flavonoid luteolin, which has never been tested for this purpose despite its biological potential. Experimental approach The effects of luteolin were examined on irinotecan-induced intestinal mucositis in mice. Clinical signs were evaluated. Moreover, histological, oxidative, and inflammatory parameters were analysed, as well as the possible interference of luteolin in the anti-tumour activity of irinotecan. Key results Luteolin (30 mg·kg-1 ; p.o. or i.p.) prevented irinotecan-induced intestinal damage by reducing weight loss and diarrhoea score and attenuating the shortening of the duodenum and colon. Histological analysis confirmed that luteolin (p.o.) prevented villous shortening, vacuolization, and apoptosis of cells and preserved mucin production in the duodenum and colon. Moreover, luteolin treatment mitigated irinotecan-induced oxidative stress, by reducing the levels of ROS and LOOH and augmenting endogenous antioxidants, and inflammation by decreasing MPO enzymic activity, TNF, IL-1β, and IL-6 levels and increasing IL-4 and IL-10. Disruption of the tight junctions ZO-1 and occludin was also prevented by luteolin treatment. Importantly, luteolin did not interfere with the anti-tumour activity of irinotecan. Conclusion and implications Luteolin prevents intestinal mucositis induced by irinotecan and therefore could be a potential adjunct in anti-tumour therapy to control this adverse effect, increasing treatment adherence and consequently the chances of cancer remission.

63 citations

Journal ArticleDOI
TL;DR: The theory of dietary herbal medicines, which are an important part of the Traditional Chinese medicine system, has a history of thousands of years, and research on the major compounds with bioactivities, especially those related to its clinical application or healthcare function, need be strengthened.

62 citations

Journal ArticleDOI
TL;DR: Treatment of Mdivi-1, a Drp1 GTPase inhibitor, negated the protective effect of luteolin on levels of TFEB, LAMP1, and LC3B, as well as loss of mitochondrial membrane potential and cardiomyocyte contractile dysfunction in the face of doxorubicin challenge.
Abstract: Doxorubicin is a valuable antineoplastic drug although its clinical use is greatly hindered by its severe cardiotoxicity with dismal target therapy available. Luteolin is a natural product extracted from vegetables and fruits with a wide range of biological efficacies including anti-oxidative, anti-tumorigenic, and anti-inflammatory properties. This study was designed to examine the possible effect of luteolin on doxorubicin-induced cardiotoxicity, if any, and the mechanism(s) involved with a focus on mitochondrial autophagy. Luteolin application (10 μM) in adult mouse cardiomyocytes overtly improved doxorubicin-induced cardiomyocyte contractile dysfunction including elevated peak shortening amplitude and maximal velocity of shortening/relengthening along with unchanged duration of shortening and relengthening. Luteolin alleviated doxorubicin-induced cardiotoxicity including apoptosis, accumulation of reactive oxygen species (ROS) and loss of mitochondrial membrane potential. Furthermore, luteolin attenuated doxorubicin-induced cardiotoxicity through promoting mitochondrial autophagy in association with facilitating phosphorylation of Drp1 at Ser616, and upregulating TFEB expression. In addition, luteolin treatment partially attenuated low dose doxorubicin-induced elongation of mitochondria. Treatment of Mdivi-1, a Drp1 GTPase inhibitor, negated the protective effect of luteolin on levels of TFEB, LAMP1, and LC3B, as well as loss of mitochondrial membrane potential and cardiomyocyte contractile dysfunction in the face of doxorubicin challenge. Taken together, these findings provide novel insights for the therapeutic efficacy of luteolin against doxorubicin-induced cardiotoxicity possibly through improved mitochondrial autophagy.

59 citations


Cites background from "Isolation of Luteolin and Luteolin-..."

  • ...It was demonstrated that oral bioavailability of luteolin was approximately 26% following administration (Lin et al., 2015)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The absorption of dietary flavonoid glycosides in humans involves a critical deglycosylation step that is mediated by epithelial β-glucosidases (LPH andCBG), indicating a role of human LPH and CBG from small intestine in flavonoids absorption and metabolism.
Abstract: Background: Pharmacokinetic studies have shown that the small intestine is the major site of absorption for many flavonoid glucosides. Flavonoids are generally present as glycosylated forms in plants and foods, but there is increasing evidence that the forms reaching the systemic circulation are glucuronidated, sulphated and methylated derivatives. Hence, first-pass metabolism (small intestine-liver) appears to involve a critical deglycosylation step for which the mechanisms are not known. Aims: To explore the hypothesis that deglycosylation is a prerequisite to absorption and metabolism of dietary flavonoid glycosides, to identify the enzymes responsible, and relate their specificities with absorption kinetics. Methods: Flavonoid glycoside hydrolysing enzymes were isolated from samples of human small intestine and liver using chromatographic techniques. The proteins were characterised with respect to the cellular fraction with which they were associated, molecular weight, specificity for various substrates, and cross-reactions with antibodies. Cellular models were used to mimic the small intestine. Results: Protein extracts from human jejunal mucosa were highly efficient in hydrolysing flavonoid glycosides, consistent with an enterocyte-mediated deglycosylation process. Considerable inter-individual variation was observed [e. g. range, mean and standard deviation for rate of hydrolysis of quercetin-3-glucoside (n = 10) were 6.7-456, 96, and 134 nmol min(-1) (mg protein)(-1), respectively]. Two beta-glucosidases with activity towards flavonoid glycosides were isolated from human small intestine mucosa: lactase-phlorizin hydrolase (LPH; localised to the apical membrane of small intestinal epithelial cells) and cytosolic beta-glucosidase (CBG), indicating a role of human LPH and CBG from small intestine in flavonoid absorption and metabolism. Hydrolysis of flavonoid glycosides was only detected in cultured cells exhibiting beta-glucosidase activity. Conclusions: The absorption of dietary flavonoid glycosides in humans involves a critical deglycosylation step that is mediated by epithelial beta-glucosidases (LPH and CBG). The significant variation in beta-glucosidase activity between individuals may be a factor determining variation in flavonoid bioavailability.

619 citations

Journal ArticleDOI
TL;DR: The antioxidant capacities of quercetin, 3′‐O‐Methylquercet in and some of their conjugated derivatives were compared by the measurement of the conjugate dienes resulting from the Cu2+‐induced oxidation of human LDL.

587 citations

Journal ArticleDOI
TL;DR: Analysis of structure-activity data revealed a model of the minimal essential features required for PKC inhibition by flavonoids: a coplanar flavone structure with free hydroxyl substituents at the 3', 4' and 7-positions.

460 citations

Journal ArticleDOI
TL;DR: In vivo and in vivo, luteolin reduced increased vascular permeability and was effective in animal models of inflammation after parenteral and oral application, indicating that it has the potential to protect from diseases associated with inflammatory processes such as cardiovascular disease.
Abstract: Luteolin is a flavone which occurs in medicinal plants as well as in some vegetables and spices. It is a natural anti-oxidant with less pro-oxidant potential than the flavonol quercetin, the best studied flavonoid, but apparently with a better safety profile. It displays excellent radical scavenging and cytoprotective properties, especially when tested in complex biological systems where it can interact with other anti-oxidants like vitamins. Luteolin displays specific anti-inflammatory effects at micromolar concentrations which are only partly explained by its anti-oxidant capacities. The anti-inflammatory activity includes activation of anti-oxidative enzymes, suppression of the NFkappaB pathway and inhibition of pro-inflammatory substances. In vivo, luteolin reduced increased vascular permeability and was effective in animal models of inflammation after parenteral and oral application. Although luteolin is only a minor component in our nutrition (less than 1 mg/day) epidemiological studies indicate that it has the potential to protect from diseases associated with inflammatory processes such as cardiovascular disease. Luteolin often occurs in the form of glycosides in plants, but these are cleaved and the aglycones are conjugated and metabolized after nutritional uptake which has to be considered when evaluating in vitro studies. Some data for oral and topical bioavailability exist, but more quantitative research in this field is needed to evaluate the physiological and therapeutical potential of luteolin.

428 citations

Journal ArticleDOI
TL;DR: The absorption analysis using rat everted small intestine demonstrated that luteolin was converted to glucuronides during passing through the intestinal mucosa and thatluteolin 7‐O‐β‐glucoside was absorbed after hydrolysis to luteolini.

368 citations