scispace - formally typeset
Search or ask a question
Journal Article•DOI•

Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme.

TL;DR: It is shown that nitric oxide synthetase activity requires calmodulin, and the native enzyme appears to be a monomer.
Abstract: Nitric oxide mediates vascular relaxing effects of endothelial cells, cytotoxic actions of macrophages and neutrophils, and influences of excitatory amino acids on cerebellar cyclic GMP. Its enzymatic formation from arginine by a soluble enzyme associated with stoichiometric production of citrulline requires NADPH and Ca2+. We show that nitric oxide synthetase activity requires calmodulin. Utilizing a 2',5'-ADP affinity column eluted with NADPH, we have purified nitric oxide synthetase 6000-fold to homogeneity from rat cerebellum. The purified enzyme migrates as a single 150-kDa band on SDS/PAGE, and the native enzyme appears to be a monomer.
Citations
More filters
Journal Article•DOI•
TL;DR: Current evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion, which is presented in detail in this review.
Abstract: The discovery that mammalian cells have the ability to synthesize the free radical nitric oxide (NO) has stimulated an extraordinary impetus for scientific research in all the fields of biology and medicine. Since its early description as an endothelial-derived relaxing factor, NO has emerged as a fundamental signaling device regulating virtually every critical cellular function, as well as a potent mediator of cellular damage in a wide range of conditions. Recent evidence indicates that most of the cytotoxicity attributed to NO is rather due to peroxynitrite, produced from the diffusion-controlled reaction between NO and another free radical, the superoxide anion. Peroxynitrite interacts with lipids, DNA, and proteins via direct oxidative reactions or via indirect, radical-mediated mechanisms. These reactions trigger cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. In vivo, peroxynitrite generation represents a crucial pathogenic mechanism in conditions such as stroke, myocardial infarction, chronic heart failure, diabetes, circulatory shock, chronic inflammatory diseases, cancer, and neurodegenerative disorders. Hence, novel pharmacological strategies aimed at removing peroxynitrite might represent powerful therapeutic tools in the future. Evidence supporting these novel roles of NO and peroxynitrite is presented in detail in this review.

5,514 citations

Journal Article•DOI•
Carl Nathan1•
TL;DR: How different forms of nitric oxide synthase help confer specificity and diversity on the effects of this remarkable signaling molecule is reviewed.
Abstract: Evolution has resorted to nitric oxide (NO), a tiny, reactive radical gas, to mediate both servoregulatory and cytotoxic functions. This article reviews how different forms of nitric oxide synthase help confer specificity and diversity on the effects of this remarkable signaling molecule.

4,149 citations

Journal Article•DOI•
TL;DR: This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in the authors' understanding of this enzyme family.
Abstract: This review concentrates on advances in nitric oxide synthase (NOS) structure, function and inhibition made in the last seven years, during which time substantial advances have been made in our understanding of this enzyme family. There is now information on the enzyme structure at all levels from primary (amino acid sequence) to quaternary (dimerization, association with other proteins) structure. The crystal structures of the oxygenase domains of inducible NOS (iNOS) and vascular endothelial NOS (eNOS) allow us to interpret other information in the context of this important part of the enzyme, with its binding sites for iron protoporphyrin IX (haem), biopterin, L-arginine, and the many inhibitors which interact with them. The exact nature of the NOS reaction, its mechanism and its products continue to be sources of controversy. The role of the biopterin cofactor is now becoming clearer, with emerging data implicating one-electron redox cycling as well as the multiple allosteric effects on enzyme activity. Regulation of the NOSs has been described at all levels from gene transcription to covalent modification and allosteric regulation of the enzyme itself. A wide range of NOS inhibitors have been discussed, interacting with the enzyme in diverse ways in terms of site and mechanism of inhibition, time-dependence and selectivity for individual isoforms, although there are many pitfalls and misunderstandings of these aspects. Highly selective inhibitors of iNOS versus eNOS and neuronal NOS have been identified and some of these have potential in the treatment of a range of inflammatory and other conditions in which iNOS has been implicated.

3,418 citations

Journal Article•DOI•
25 Oct 1990-Nature
TL;DR: It is demonstrated that NO synthase in the brain to be exclusively associated with discrete neuronal populations, and prominent neural localizations provided the first conclusive evidence for a strong association of NO with neurons.
Abstract: Nitric oxide (NO), apparently identical to endothelium-derived relaxing factor in blood vessels, is also formed by cytotoxic macrophages, in adrenal gland and in brain tissue, where it mediates the stimulation by glutamate of cyclic GMP formation in the cerebellum Stimulation of intestinal or anococcygeal nerves liberates NO, and the resultant muscle relaxation is blocked by arginine derivatives that inhibit NO synthesis It is, however, unclear whether in brain or intestine, NO released following nerve stimulation is formed in neurons, glia, fibroblasts, muscle or blood cells, all of which occur in proximity to neurons and so could account for effects of nerve stimulation on cGMP and muscle tone We have now localized NO synthase protein immunohistochemically in the rat using antisera to the purified enzyme We demonstrate NO synthase in the brain to be exclusively associated with discrete neuronal populations NO synthase is also concentrated in the neural innervation of the posterior pituitary, in autonomic nerve fibres in the retina, in cell bodies and nerve fibres in the myenteric plexus of the intestine, in adrenal medulla, and in vascular endothelial cells These prominent neural localizations provide the first conclusive evidence for a strong association of NO with neurons

2,979 citations

Journal Article•DOI•
TL;DR: This review will describe the known biochemical mechanisms involved in the synthesis of NO from L-arginine by the NO synthases and will also describe the nature of these enzymes, their inhibition and their molecular characteristics.
Abstract: Nitric oxide is an inorganic free radical gas, of formula *N=O (abbreviated as NO). The discovery in 1987/88 that vascular endothelial cells are able to synthesize NO from L-arginine as a transcellular signal [1-4] was initially received by most biologists with considerable scepticism. By now, however, the existence of the L-arginine:NO pathway has been thoroughly documented and its relevance in biology is slowly being unravelled. All of this has led to the appearance of a new and vigorous field of research, as evidenced by the increasing number of publications relating to NO and NO synthases (Figure 1). This review will describe the known biochemical mechanisms involved in the synthesis of NO from L-arginine by the NO synthases and will also describe the nature of these enzymes, their inhibition and their molecular characteristics. For more extensive reviews about the biological roles of NO, see [5-7].

2,792 citations

References
More filters
Journal Article•DOI•
24 Nov 1988-Nature
TL;DR: It is reported here that by acting on NMDA (N-methyl-D-aspartate) receptors on cerebellar cells, glutamate induces the release of a diffusible messenger with strikingly similar properties to EDRF that accounts for the cGMP responses that take place following NMDA receptor activation.
Abstract: In the vascular system, endothelium-derived relaxing factor (EDRF) is the name of the local hormone released from endothelial cells in response to vasodilators such as acetylcholine, bradykinin and histamine. It diffuses into underlying smooth muscle where it causes relaxation by activating guanylate cyclase, so producing a rise in cyclic GMP levels. It has been known for many years that in the central nervous system (CNS) the excitatory neurotransmitter glutamate can elicit large increases in cGMP levels, particularly in the cerebellum where the turnover rate of cGMP is low. Recent evidence indicates that cell-cell interactions are involved in this response. We report here that by acting on NMDA (N-methyl-D-aspartate) receptors on cerebellar cells, glutamate induces the release of a diffusible messenger with strikingly similar properties to EDRF. This messenger is released in a Ca2+-dependent manner and its activity accounts for the cGMP responses that take place following NMDA receptor activation. In the CNS, EDRF may link activation of postsynaptic NMDA receptors to functional modifications in neighbouring presynaptic terminals and glial cells.

2,581 citations

Journal Article•DOI•
TL;DR: Endothelium-dependent relaxation of blood vessels is produced by a large number of agents (e.g., acetylcholine, ATP and ADP, substance P, bradykinin, histamine, thrombin, serotonin). With some agents, relaxation may be limited to certain species and/or blood vessels as mentioned in this paper.
Abstract: Endothelium-dependent relaxation of blood vessels is produced by a large number of agents (e.g., acetylcholine, ATP and ADP, substance P, bradykinin, histamine, thrombin, serotonin). With some agents, relaxation may be limited to certain species and/or blood vessels. Relaxation results from release of a very labile non-prostanoid endothelium-derived relaxing factor (EDRF) or factors. EDRF stimulates guanylate cyclase of the vascular smooth muscle, with the resulting increase in cyclic GMP activating relaxation. EDRF is rapidly inactivated by hemoglobin and superoxide. There is strong evidence that EDRF from many blood vessels and from cultured endothelial cells is nitric oxide (NO) and that its precursor is L-arginine. There is evidence for other relaxing factors, including an endothelium-derived hyperpolarizing factor in some vessels. Flow-induced shear stress also stimulates EDRF release. Endothelium-dependent relaxation occurs in resistance vessels as well as in larger arteries, and is generally more pronounced in arteries than veins. EDRF also inhibits platelet aggregation and adhesion to the blood vessel wall. Endothelium-derived contracting factors appear to be responsible for endothelium-dependent contractions produced by arachidonic acid and hypoxia in isolated systemic vessels and by certain agents and by rapid stretch in isolated cerebral vessels. In all such experiments, the endothelium-derived contracting factor appears to be some product or by-product of cyclooxygenase activity. Recently, endothelial cells in culture have been found to synthesize a peptide, endothelin, which is an extremely potent vasoconstrictor. The possible physiological roles and pathophysiological significance of endothelium-derived relaxing and contracting factors are briefly discussed.

1,868 citations

Journal Article•DOI•
TL;DR: It is established that nitric oxide mediates the stimulation by glutamate of cGMP formation, which mediates influences of numerous neurotransmitters and modulators on vascular smooth muscle and leukocytes.
Abstract: Nitric oxide, which mediates influences of numerous neurotransmitters and modulators on vascular smooth muscle and leukocytes, can be formed in the brain from arginine by an enzymatic activity that stoichiometrically generates citrulline. We show that glutamate and related amino acids, such as N-methyl-D-aspartate, markedly stimulate arginine--citrulline transformation in cerebellar slices stoichiometrically with enhancement of cGMP levels. N omega-monomethyl-L-arginine blocks the augmentation both of citrulline and cGMP with identical potencies. Arginine competitively reverses both effects of N omega-monomethyl-L-arginine with the same potencies. Hemoglobin, which complexes nitric oxide, prevents the stimulation by N-methyl-D-aspartate of cGMP levels, and superoxide dismutase, which elevates nitric oxide levels, increases cGMP formation. These data establish that nitric oxide mediates the stimulation by glutamate of cGMP formation.

1,854 citations

Journal Article•DOI•
23 Jan 1987-Science
TL;DR: An L-arginine-dependent biochemical pathway synthesizing L-citrulline and nitrite, coupled to an effector mechanism, is shown to cause this pattern of metabolic inhibition in cytotoxic activated macrophages.
Abstract: Previous studies have shown that cytotoxic activated macrophages cause inhibition of DNA synthesis, of mitochondrial respiration, and of aconitase activity in tumor target cells. An L-arginine-dependent biochemical pathway synthesizing L-citrulline and nitrite, coupled to an effector mechanism, is now shown to cause this pattern of metabolic inhibition. Murine cytotoxic activated macrophages synthesize L-citrulline and nitrite in the presence of L-arginine but not D-arginine. L-Citrulline and nitrite biosynthesis by cytotoxic activated macrophages is inhibited by NG-monomethyl-L-arginine, which also inhibits this cytotoxic effector mechanism. This activated macrophage cytotoxic effector system is associated with L-arginine deiminase activity, and the imino nitrogen removed from the guanido group of L-arginine by the deiminase reaction subsequently undergoes oxidation to nitrite. L-Homoarginine, an alternative substrate for this deiminase, is converted to L-homocitrulline with concurrent nitrite synthesis and similar biologic effects.

1,549 citations

Journal Article•DOI•
TL;DR: Palmer et al. as mentioned in this paper showed that macrophages immunostimulated with interferon gamma and Escherichia coli lipopolysaccharide synthesize NO2-, NO3-, and citrulline from L-arginine by oxidation of one of the two chemically equivalent guanido nitrogens.
Abstract: Previous studies have shown that murine macrophages immunostimulated with interferon gamma and Escherichia coli lipopolysaccharide synthesize NO2-, NO3-, and citrulline from L-arginine by oxidation of one of the two chemically equivalent guanido nitrogens. The enzymatic activity for this very unusual reaction was found in the 100,000g supernatant isolated from activated RAW 264.7 cells and was totally absent in unstimulated cells. This activity requires NADPH and L-arginine and is enhanced by Mg2+. When the subcellular fraction containing the enzyme activity was incubated with L-arginine, NADPH, and Mg2+, the formation of nitric oxide was observed. Nitric oxide formation was dependent on the presence of L-arginine and NADPH and was inhibited by the NO2-/NO3- synthesis inhibitor NG-monomethyl-L-arginine. Furthermore, when incubated with L-[guanido-15N2]arginine, the nitric oxide was 15N-labeled. The results show that nitric oxide is an intermediate in the L-arginine to NO2-, NO3-, and citrulline pathway. L-Arginine is required for the activation of macrophages to the bactericidal/tumoricidal state and suggests that nitric oxide is serving as an intracellular signal for this activation process in a manner similar to that very recently observed in endothelial cells, where nitric oxide leads to vascular smooth muscle relaxation [Palmer, R. M. J., Ashton, D. S., & Moncada, S. (1988) Nature (London) 333, 664-666].

1,494 citations