scispace - formally typeset
Search or ask a question
Journal ArticleDOI

J. Appl. Cryst.の発刊に際して

10 Mar 1970-Vol. 12, Iss: 1, pp 1-1
About: The article was published on 1970-03-10 and is currently open access. It has received 8159 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: The implementation of crystallographic structure-refinement procedures that include both X-ray and neutron data (separate or jointly) in the PHENIX system is described.
Abstract: Approximately 85% of the structures deposited in the Protein Data Bank have been solved using X-ray crystallography, making it the leading method for three-dimensional structure determination of macromolecules. One of the limitations of the method is that the typical data quality (resolution) does not allow the direct determination of H-atom positions. Most hydrogen positions can be inferred from the positions of other atoms and therefore can be readily included into the structure model as a priori knowledge. However, this may not be the case in biologically active sites of macromolecules, where the presence and position of hydrogen is crucial to the enzymatic mechanism. This makes the application of neutron crystallography in biology particularly important, as H atoms can be clearly located in experimental neutron scattering density maps. Without exception, when a neutron structure is determined the corresponding X-ray structure is also known, making it possible to derive the complete structure using both data sets. Here, the implementation of crystallographic structure-refinement procedures that include both X-ray and neutron data (separate or jointly) in the PHENIX system is described.

244 citations


Cites background or methods from "J. Appl. Cryst.の発刊に際して"

  • ...…of exchangeable H/D sites when a partially deuterated sample is used must be accounted for in neutron structures. phenix.refine automatically determines such sites and includes them for constrained occupancy refinement, ensuring that the sum of the occupancies for each H and D pair is equal to one....

    [...]

  • ...…where an interatomic scatterers (IAS) model can be used to model bonding features (Afonine et al., 2007), to highly optimized automatic rigidbody refinement (Afonine et al., 2009) and torsion-angle parameterized dynamics (Grosse-Kunstleve et al., 2009), which are important at low resolution....

    [...]

Journal ArticleDOI
TL;DR: A case study showing how the determination of multiple cocrystal structures of the protein tyrosine kinase c-Abl was used to support drug discovery, resulting in a compound effective in the treatment of chronic myelogenous leukaemia.
Abstract: Chronic myelogenous leukaemia (CML) results from the Bcr-Abl oncoprotein, which has a constitutively activated Abl tyrosine kinase domain. Although most chronic phase CML patients treated with imatinib as first-line therapy maintain excellent durable responses, patients who have progressed to advanced-stage CML frequently fail to respond or lose their response to therapy owing to the emergence of drug-resistant mutants of the protein. More than 40 such point mutations have been observed in imatinib-resistant patients. The crystal structures of wild-type and mutant Abl kinase in complex with imatinib and other small-molecule Abl inhibitors were determined, with the aim of understanding the molecular basis of resistance and to aid in the design and optimization of inhibitors active against the resistance mutants. These results are presented in a way which illustrates the approaches used to generate multiple structures, the type of information that can be gained and the way that this information is used to support drug discovery.

242 citations


Cites methods from "J. Appl. Cryst.の発刊に際して"

  • ...Structure validation was performed using tools in the programs O and PROCHECK (Laskowski et al., 1993)....

    [...]

Journal ArticleDOI
TL;DR: General and modern synthetic strategies to prepare MOFs are covered, and their structural diversity and properties with respect to application perspectives are discussed.
Abstract: Metal-organic frameworks (MOFs) are a class of hybrid network supramolecular solid materials comprised of organized organic linkers and metal cations. They can display enormously high surface areas with tunable pore size and functionality, and can be used as hosts for a range of guest molecules. Since their discovery, MOFs have experienced widespread exploration for their applications in gas storage, drug delivery and sensing. This article covers general and modern synthetic strategies to prepare MOFs, and discusses their structural diversity and properties with respect to application perspectives.

240 citations

Journal ArticleDOI
TL;DR: Key to these findings, and to mechanistic insights reported, are labile-substituted complexes as catalyst precursors.
Abstract: Multiple insertions of acrylate in copolymerization with ethylene, and an insertion homo-oligomerization of methyl acrylate were observed for the first time. Key to these findings, and to mechanistic insights reported, are labile-substituted complexes as catalyst precursors.

240 citations

Journal ArticleDOI
TL;DR: MORPHEUS is an initial protein crystallization screen with a unique organization which integrates components and ligands selected after analysing all crystal structure data deposited with the Protein Data Bank and local data gathered at the MRC Laboratory of Molecular Biology, Cambridge, England.
Abstract: A 96-condition initial screen for protein crystallization, called MORPHEUS, has been developed at the MRC Laboratory of Molecular Biology, Cambridge, England (MRC-LMB). The concept integrates several innovative approaches, such as chemically compatible mixes of potential ligands, new buffer systems and precipitant mixes that also act as cryoprotectants. Instead of gathering a set of crystallization conditions that have already been successful, a selection of molecules frequently observed in the Protein Data Bank (PDB) to co-crystallize with proteins has been made. These have been put together in mixes of similar chemical behaviour and structure, and combined with buffers and precipitant mixes that were also derived from PDB searches, to build the screen de novo. Observations made at the MRC-LMB and many practical aspects were also taken into account when formulating the screen. The resulting screen is easy to use, comprehensive yet small, and has already yielded a list of crystallization hits using both known and novel samples. As an indicator of success, the screen has now become one of the standard screens used routinely at the MRC-LMB when searching initial crystallization conditions for biological macromolecules.

240 citations


Cites background from "J. Appl. Cryst.の発刊に際して"

  • ...Precipitants can be mixed to have a synergistic effect (Majeed et al., 2003) and/or to provide cryoprotection (Mitchell & Garman, 1994; McFerrin & Snell, 2002)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The goals of the PDB are described, the systems in place for data deposition and access, how to obtain further information and plans for the future development of the resource are described.
Abstract: The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and near-term plans for the future development of the resource.

34,239 citations

Journal ArticleDOI
TL;DR: New features added to the refinement program SHELXL since 2008 are described and explained.
Abstract: The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as `a CIF') containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and Mac OS X operating systems, and is particularly suitable for multiple-core processors.

28,425 citations

Journal ArticleDOI
TL;DR: CCP4mg is a project that aims to provide a general-purpose tool for structural biologists, providing tools for X-ray structure solution, structure comparison and analysis, and publication-quality graphics.
Abstract: CCP4mg is a project that aims to provide a general-purpose tool for structural biologists, providing tools for X-ray structure solution, structure comparison and analysis, and publication-quality graphics. The map-fitting tools are available as a stand-alone package, distributed as `Coot'.

27,505 citations

Journal ArticleDOI
TL;DR: The PHENIX software for macromolecular structure determination is described and its uses and benefits are described.
Abstract: Macromolecular X-ray crystallography is routinely applied to understand biological processes at a molecular level. How­ever, significant time and effort are still required to solve and complete many of these structures because of the need for manual interpretation of complex numerical data using many software packages and the repeated use of interactive three-dimensional graphics. PHENIX has been developed to provide a comprehensive system for macromolecular crystallo­graphic structure solution with an emphasis on the automation of all procedures. This has relied on the development of algorithms that minimize or eliminate subjective input, the development of algorithms that automate procedures that are traditionally performed by hand and, finally, the development of a framework that allows a tight integration between the algorithms.

18,531 citations

Journal ArticleDOI
TL;DR: A description is given of Phaser-2.1: software for phasing macromolecular crystal structures by molecular replacement and single-wavelength anomalous dispersion phasing.
Abstract: Phaser is a program for phasing macromolecular crystal structures by both molecular replacement and experimental phasing methods. The novel phasing algorithms implemented in Phaser have been developed using maximum likelihood and multivariate statistics. For molecular replacement, the new algorithms have proved to be significantly better than traditional methods in discriminating correct solutions from noise, and for single-wavelength anomalous dispersion experimental phasing, the new algorithms, which account for correlations between F+ and F−, give better phases (lower mean phase error with respect to the phases given by the refined structure) than those that use mean F and anomalous differences ΔF. One of the design concepts of Phaser was that it be capable of a high degree of automation. To this end, Phaser (written in C++) can be called directly from Python, although it can also be called using traditional CCP4 keyword-style input. Phaser is a platform for future development of improved phasing methods and their release, including source code, to the crystallographic community.

17,755 citations