scispace - formally typeset
Search or ask a question
Journal ArticleDOI

J. Appl. Cryst.の発刊に際して

10 Mar 1970-Vol. 12, Iss: 1, pp 1-1
About: The article was published on 1970-03-10 and is currently open access. It has received 8159 citations till now.
Citations
More filters
Journal ArticleDOI
TL;DR: This paper could serve as a general literature citation when one or more of the open-source SH ELX programs (and the Bruker AXS version SHELXTL) are employed in the course of a crystal-structure determination.
Abstract: An account is given of the development of the SHELX system of computer programs from SHELX-76 to the present day. In addition to identifying useful innovations that have come into general use through their implementation in SHELX, a critical analysis is presented of the less-successful features, missed opportunities and desirable improvements for future releases of the software. An attempt is made to understand how a program originally designed for photographic intensity data, punched cards and computers over 10000 times slower than an average modern personal computer has managed to survive for so long. SHELXL is the most widely used program for small-molecule refinement and SHELXS and SHELXD are often employed for structure solution despite the availability of objectively superior programs. SHELXL also finds a niche for the refinement of macromolecules against high-resolution or twinned data; SHELXPRO acts as an interface for macromolecular applications. SHELXC, SHELXD and SHELXE are proving useful for the experimental phasing of macromolecules, especially because they are fast and robust and so are often employed in pipelines for high-throughput phasing. This paper could serve as a general literature citation when one or more of the open-source SHELX programs (and the Bruker AXS version SHELXTL) are employed in the course of a crystal-structure determination.

81,116 citations


Cites background from "J. Appl. Cryst.の発刊に際して"

  • ...These days such padding is less desirable and there are excellent programs such as enCIFer (Allen et al., 2004) for working with CIF files, so CIFTAB is now effectively redundant....

    [...]

Journal ArticleDOI
TL;DR: The goals of the PDB are described, the systems in place for data deposition and access, how to obtain further information and plans for the future development of the resource are described.
Abstract: The Protein Data Bank (PDB; http://www.rcsb.org/pdb/ ) is the single worldwide archive of structural data of biological macromolecules. This paper describes the goals of the PDB, the systems in place for data deposition and access, how to obtain further information, and near-term plans for the future development of the resource.

34,239 citations


Cites methods from "J. Appl. Cryst.の発刊に際して"

  • ...This dictionary contains among oth i ems descriptions of the solution components, the experime conditions, enumerated lists of the instruments used, as we information about structure refinement....

    [...]

Journal ArticleDOI
TL;DR: New features added to the refinement program SHELXL since 2008 are described and explained.
Abstract: The improvements in the crystal structure refinement program SHELXL have been closely coupled with the development and increasing importance of the CIF (Crystallographic Information Framework) format for validating and archiving crystal structures. An important simplification is that now only one file in CIF format (for convenience, referred to simply as `a CIF') containing embedded reflection data and SHELXL instructions is needed for a complete structure archive; the program SHREDCIF can be used to extract the .hkl and .ins files required for further refinement with SHELXL. Recent developments in SHELXL facilitate refinement against neutron diffraction data, the treatment of H atoms, the determination of absolute structure, the input of partial structure factors and the refinement of twinned and disordered structures. SHELXL is available free to academics for the Windows, Linux and Mac OS X operating systems, and is particularly suitable for multiple-core processors.

28,425 citations


Cites methods from "J. Appl. Cryst.の発刊に際して"

  • ...Multithreading is achieved using OpenMP along the lines suggested by Diederichs (2000), and the program is particularly suitable for multiple-core processors....

    [...]

Journal ArticleDOI
TL;DR: CCP4mg is a project that aims to provide a general-purpose tool for structural biologists, providing tools for X-ray structure solution, structure comparison and analysis, and publication-quality graphics.
Abstract: CCP4mg is a project that aims to provide a general-purpose tool for structural biologists, providing tools for X-ray structure solution, structure comparison and analysis, and publication-quality graphics. The map-fitting tools are available as a stand-alone package, distributed as `Coot'.

27,505 citations


Cites background or methods from "J. Appl. Cryst.の発刊に際して"

  • ...…e-mail: emsley@ysbl.york.ac.uk # 2004 International Union of Crystallography Printed in Denmark ± all rights reserved CCP4mg is a project that aims to provide a general-purpose tool for structural biologists, providing tools for X-ray structure solution, structure comparison and…...

    [...]

  • ...The introduction of FRODO (Jones, 1978) and then O (Jones et al., 1991) to the ®eld of protein crystallography was in each case revolutionary, each in their time breaking new ground in demonstrating what was possible with the current hardware....

    [...]

Journal ArticleDOI
TL;DR: The PHENIX software for macromolecular structure determination is described and its uses and benefits are described.
Abstract: Macromolecular X-ray crystallography is routinely applied to understand biological processes at a molecular level. How­ever, significant time and effort are still required to solve and complete many of these structures because of the need for manual interpretation of complex numerical data using many software packages and the repeated use of interactive three-dimensional graphics. PHENIX has been developed to provide a comprehensive system for macromolecular crystallo­graphic structure solution with an emphasis on the automation of all procedures. This has relied on the development of algorithms that minimize or eliminate subjective input, the development of algorithms that automate procedures that are traditionally performed by hand and, finally, the development of a framework that allows a tight integration between the algorithms.

18,531 citations


Cites methods from "J. Appl. Cryst.の発刊に際して"

  • ...After ensuring that the diffraction data are sound and understood, the next critical necessity for solving a structure is the determination of phases using one of several strategies (Adams, Afonine et al., 2009)....

    [...]

  • ...Tools such as efficient rigid-body refinement (multiplezones algorithm; Afonine et al., 2009), simulated-annealing refinement (Brünger et al., 1987) in Cartesian or torsion-angle space (Grosse-Kunstleve et al., 2009), automatic NCS detection and its use as restraints in refinement are important at…...

    [...]

References
More filters
Journal ArticleDOI
Veit Elser1
TL;DR: An algorithm for determining crystal structures from diffraction data is described which does not rely on the usual reciprocal-space formulations of atomicity, and implements atomicity constraints in real space as well as intensity constraints in reciprocal space by projections that restore each constraint with the minimal modification of the scattering density.
Abstract: An algorithm for determining crystal structures from diffraction data is described which does not rely on the usual reciprocal-space formulations of atomicity. The new algorithm implements atomicity constraints in real space, as well as intensity constraints in reciprocal space, by projections that restore each constraint with the minimal modification of the scattering density. To recover the true density, the two projections are combined into a single operation, the difference map, which is iterated until the magnitude of the density modification becomes acceptably small. The resulting density, when acted upon by a single additional operation, is by construction a density that satisfies both intensity and atomicity constraints. Numerical experiments have yielded solutions for atomic resolution X-ray data sets with over 400 non-hydrogen atoms, as well as for neutron data, where positivity of the density cannot be invoked.

118 citations

Journal ArticleDOI
TL;DR: The default model-preparation scheme of MOLREP is described and two examples are presented of model improvement using X-ray data.
Abstract: The success of molecular replacement is critically dependent on the quality of the search model. Several model-preparation procedures are integrated in the molecular-replacement program MOLREP. These include model modification on the basis of amino-acid sequence alignment and model correction based on analysis of the solvent-accessibility of the atoms. The packing function used in MOLREP for the translational search is explained in the context of model preparation. In difficult cases, bioinformatics-based modifications are not sufficient for successful molecular replacement. An approach implemented in MOLREP for solving cases with translational noncrystallographic symmetry is an example of model preparation in which analysis of X-ray data plays an essential role. In addition, two examples are presented in which the X-ray data were used to refine partial models for subsequent use in molecular replacement.

118 citations

Journal ArticleDOI
TL;DR: A new algorithm for the automatic modelling of discrete heterogeneity is presented, and the authors' single multi-conformer model, with correlated structural features to represent heterogeneity, shows improved agreement with the diffraction data compared with a single-conformation model.
Abstract: The native state of a protein is regarded to be an ensemble of conformers, which allows association with binding partners. While some of this structural heterogeneity is retained upon crystallization, reliably extracting heterogeneous features from diffraction data has remained a challenge. In this study, a new algorithm for the automatic modelling of discrete hetero­geneity is presented. At high resolution, the authors’ single multi-conformer model, with correlated structural features to represent heterogeneity, shows improved agreement with the diffraction data compared with a single-conformer model. The model appears to be representative of the set of structures present in the crystal. In contrast, below 2 A resolution representing ambiguous electron density by correlated multi-conformers in a single model does not yield better agreement with the experimental data. Consistent with previous studies, this suggests that variability in multi-conformer models at lower resolution levels reflects uncertainty more than co­ordinated motion.

118 citations

Journal ArticleDOI
TL;DR: The Situs software provides a novel set of visualization and registration procedures to facilitate the localization of protein structures in low-resolution SAXS bead models and a size-invariant shape descriptor of `sphericity' is proposed to assess the onset of ambiguity in the matching of globular molecules.
Abstract: Three-dimensional bead models of proteins in solution are routinely determined from one-dimensional small-angle X-ray scattering (SAXS) data. The Situs software provides a novel set of visualization and registration procedures to facilitate the localization of protein structures in low-resolution SAXS bead models. The docking algorithm takes advantage of a reduced representation of the input data sets by means of topology-representing neural networks to expedite the rigid-body search. The precision of the docking was tested on ten different simulated bead models: for >100 beads typically arising in SAXS models, a docking precision of the order of an angstrom can be achieved. The shape-matching score captured the correct solutions in all ten trial cases and was sufficiently stringent to yield unique matches in seven systems. A size-invariant shape descriptor of `sphericity' is proposed to assess the onset of ambiguity in the matching of globular molecules. The software, a tutorial and supplementary data are available at http://situs.scripps.edu/saxs.

117 citations

Journal ArticleDOI
TL;DR: Various practical approaches are evaluated that users can implement to limit radiation damage at the P12 beamline to maximize the chances of collecting quality data from radiation sensitive samples.
Abstract: Radiation damage is the general curse of structural biologists who use synchrotron small-angle X-ray scattering (SAXS) to investigate biological macromolecules in solution. The EMBL-P12 biological SAXS beamline located at the PETRAIII storage ring (DESY, Hamburg, Germany) caters to an extensive user community who integrate SAXS into their diverse structural biology programs. The high brilliance of the beamline [5.1 × 1012 photons s−1, 10 keV, 500 (H) µm × 250 (V) µm beam size at the sample position], combined with automated sample handling and data acquisition protocols, enable the high-throughput structural characterization of macromolecules in solution. However, considering the often-significant resources users invest to prepare samples, it is crucial that simple and effective protocols are in place to limit the effects of radiation damage once it has been detected. Here various practical approaches are evaluated that users can implement to limit radiation damage at the P12 beamline to maximize the chances of collecting quality data from radiation sensitive samples.

117 citations