scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Joint Design of Communication and Sensing for Beyond 5G and 6G Systems

15 Feb 2021-IEEE Access (IEEE)-Vol. 9, pp 30845-30857
TL;DR: In this paper, the major design aspects of such a cellular joint communication and sensing (JCAS) system are discussed, and an analysis of the choice of the waveform that points towards choosing the one that is best suited for communication also for radar sensing is presented.
Abstract: The 6G vision of creating authentic digital twin representations of the physical world calls for new sensing solutions to compose multi-layered maps of our environments. Radio sensing using the mobile communication network as a sensor has the potential to become an essential component of the solution. With the evolution of cellular systems to mmWave bands in 5G and potentially sub-THz bands in 6G, small cell deployments will begin to dominate. Large bandwidth systems deployed in small cell configurations provide an unprecedented opportunity to employ the mobile network for sensing. In this paper, we focus on the major design aspects of such a cellular joint communication and sensing (JCAS) system. We present an analysis of the choice of the waveform that points towards choosing the one that is best suited for communication also for radar sensing. We discuss several techniques for efficiently integrating the sensing capability into the JCAS system, some of which are applicable with NR air-interface for evolved 5G systems. Specifically, methods for reducing sensing overhead by appropriate sensing signal design or by configuring separate numerologies for communications and sensing are presented. Sophisticated use of the sensing signals is shown to reduce the signaling overhead by a factor of 2.67 for an exemplary road traffic monitoring use case. We then present a vision for future advanced JCAS systems building upon distributed massive MIMO and discuss various other research challenges for JCAS that need to be addressed in order to pave the way towards natively integrated JCAS in 6G.

Content maybe subject to copyright    Report

Citations
More filters
Posted Content
TL;DR: In this paper, the authors provide a comprehensive overview on the background, range of key applications and state-of-the-art approaches of Integrated Sensing and Communications (ISAC).
Abstract: As the standardization of 5G is being solidified, researchers are speculating what 6G will be. Integrating sensing functionality is emerging as a key feature of the 6G Radio Access Network (RAN), allowing to exploit the dense cell infrastructure of 5G for constructing a perceptive network. In this paper, we provide a comprehensive overview on the background, range of key applications and state-of-the-art approaches of Integrated Sensing and Communications (ISAC). We commence by discussing the interplay between sensing and communications (S&C) from a historical point of view, and then consider multiple facets of ISAC and its performance gains. By introducing both ongoing and potential use cases, we shed light on industrial progress and standardization activities related to ISAC. We analyze a number of performance tradeoffs between S&C, spanning from information theoretical limits, tradeoffs in physical layer performance, to the tradeoff in cross-layer designs. Next, we discuss signal processing aspects of ISAC, namely ISAC waveform design and receive signal processing. As a step further, we provide our vision on the deeper integration between S&C within the framework of perceptive networks, where the two functionalities are expected to mutually assist each other, i.e., communication-assisted sensing and sensing-assisted communications. Finally, we summarize the paper by identifying the potential integration between ISAC and other emerging communication technologies, and their positive impact on the future of wireless networks.

181 citations

Journal ArticleDOI
TL;DR: In this paper , the authors provide a comprehensive review on the background, range of key applications and state-of-the-art approaches of Integrated Sensing and Communications (ISAC).
Abstract: As the standardization of 5G solidifies, researchers are speculating what 6G will be. The integration of sensing functionality is emerging as a key feature of the 6G Radio Access Network (RAN), allowing for the exploitation of dense cell infrastructures to construct a perceptive network. In this IEEE Journal on Selected Areas in Communications (JSAC) Special Issue overview, we provide a comprehensive review on the background, range of key applications and state-of-the-art approaches of Integrated Sensing and Communications (ISAC). We commence by discussing the interplay between sensing and communications (S&C) from a historical point of view, and then consider the multiple facets of ISAC and the resulting performance gains. By introducing both ongoing and potential use cases, we shed light on the industrial progress and standardization activities related to ISAC. We analyze a number of performance tradeoffs between S&C, spanning from information theoretical limits to physical layer performance tradeoffs, and the cross-layer design tradeoffs. Next, we discuss the signal processing aspects of ISAC, namely ISAC waveform design and receive signal processing. As a step further, we provide our vision on the deeper integration between S&C within the framework of perceptive networks, where the two functionalities are expected to mutually assist each other, i.e., via communication-assisted sensing and sensing-assisted communications. Finally, we identify the potential integration of ISAC with other emerging communication technologies, and their positive impacts on the future of wireless networks.

177 citations

Journal ArticleDOI
23 Jun 2022-Sensors
TL;DR: This paper provides an overview of network-based positioning, from the basics to advanced, state-of-the-art machine-learning-supported solutions, and makes a leap towards positioning with 6G networks.
Abstract: Determining the position of ourselves or our assets has always been important to humans. Technology has helped us, from sextants to outdoor global positioning systems, but real-time indoor positioning has been a challenge. Among the various solutions, network-based positioning became an option with the arrival of 5G mobile networks. The new radio technologies, minimized end-to-end latency, specialized control protocols, and booming computation capacities at the network edge offered the opportunity to leverage the overall capabilities of the 5G network for positioning—indoors and outdoors. This paper provides an overview of network-based positioning, from the basics to advanced, state-of-the-art machine-learning-supported solutions. One of the main contributions is the detailed comparison of machine learning techniques used for network-based positioning. Since new requirements are already in place for 6G networks, our paper makes a leap towards positioning with 6G networks. In order to also highlight the practical side of the topic, application examples from different domains are presented with a special focus on industrial and vehicular scenarios.

29 citations

Posted Content
TL;DR: In this article, a comprehensive survey of the evolution of non-terrestrial networks (NTNs) highlighting its relevance to 5G networks and how it will play a pivotal role in the development of 6G and beyond wireless networks is presented.
Abstract: Non-terrestrial networks (NTNs) traditionally had certain limited applications. However, the recent technological advancements opened up myriad applications of NTNs for 5G and beyond networks, especially when integrated into terrestrial networks (TNs). This article comprehensively surveys the evolution of NTNs highlighting its relevance to 5G networks and essentially, how it will play a pivotal role in the development of 6G and beyond wireless networks. The survey discusses important features of NTNs integration into TNs by delving into the new range of services and use cases, various architectures, and new approaches being adopted to develop a new wireless ecosystem. Our survey includes the major progresses and outcomes from academic research as well as industrial efforts. We first start with introducing the relevant 5G use cases and general integration challenges such as handover and deployment difficulties. Then, we review the NTNs operations in mmWave and their potential for the internet of things (IoT). Further, we discuss the significance of mobile edge computing (MEC) and machine learning (ML) in NTNs by reviewing the relevant research works. Furthermore, we also discuss the corresponding higher layer advancements and relevant field trials/prototyping at both academic and industrial levels. Finally, we identify and review 6G and beyond application scenarios, novel architectures, technological enablers, and higher layer aspects pertinent to NTNs integration.

26 citations

Journal ArticleDOI
TL;DR: An overview of state-of-the-art modulation schemes for RadCom systems, namely, chirp sequence, phase-modulated continuous wave, orthogonal frequency-division multiplexing, and orthogonality-chirp division multiplexer, is presented in this paper .
Abstract: The joint radar-communication (RadCom) concept has been continuously gaining interest due to the possibility of integrating radar sensing and communication functionalities in the same radio frequency hardware platform. Besides a number of challenges in terms of hardware design and signal processing, the choice of suitable modulation schemes plays a significant role in driving the performance of RadCom systems. In this sense, this article presents an overview of state-of-the-art modulation schemes for RadCom systems, namely, chirp sequence, phase-modulated continuous wave, orthogonal frequency-division multiplexing, and orthogonal chirp-division multiplexing. For each of them, a detailed system model is outlined, and parameters for quantifying both radar and communication performances are presented. Finally, a comparative analysis of the aforementioned RadCom modulation schemes is carried out to illustrate the presented discussion.

26 citations

References
More filters
Journal ArticleDOI
TL;DR: While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly joined terminals, the exploitation of extra degrees of freedom provided by the excess of service antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios.
Abstract: Multi-user MIMO offers big advantages over conventional point-to-point MIMO: it works with cheap single-antenna terminals, a rich scattering environment is not required, and resource allocation is simplified because every active terminal utilizes all of the time-frequency bins. However, multi-user MIMO, as originally envisioned, with roughly equal numbers of service antennas and terminals and frequency-division duplex operation, is not a scalable technology. Massive MIMO (also known as large-scale antenna systems, very large MIMO, hyper MIMO, full-dimension MIMO, and ARGOS) makes a clean break with current practice through the use of a large excess of service antennas over active terminals and time-division duplex operation. Extra antennas help by focusing energy into ever smaller regions of space to bring huge improvements in throughput and radiated energy efficiency. Other benefits of massive MIMO include extensive use of inexpensive low-power components, reduced latency, simplification of the MAC layer, and robustness against intentional jamming. The anticipated throughput depends on the propagation environment providing asymptotically orthogonal channels to the terminals, but so far experiments have not disclosed any limitations in this regard. While massive MIMO renders many traditional research problems irrelevant, it uncovers entirely new problems that urgently need attention: the challenge of making many low-cost low-precision components that work effectively together, acquisition and synchronization for newly joined terminals, the exploitation of extra degrees of freedom provided by the excess of service antennas, reducing internal power consumption to achieve total energy efficiency reductions, and finding new deployment scenarios. This article presents an overview of the massive MIMO concept and contemporary research on the topic.

6,184 citations

Journal ArticleDOI
TL;DR: This paper offers the first in-depth look at the vast applications of THz wireless products and applications and provides approaches for how to reduce power and increase performance across several problem domains, giving early evidence that THz techniques are compelling and available for future wireless communications.
Abstract: Frequencies from 100 GHz to 3 THz are promising bands for the next generation of wireless communication systems because of the wide swaths of unused and unexplored spectrum. These frequencies also offer the potential for revolutionary applications that will be made possible by new thinking, and advances in devices, circuits, software, signal processing, and systems. This paper describes many of the technical challenges and opportunities for wireless communication and sensing applications above 100 GHz, and presents a number of promising discoveries, novel approaches, and recent results that will aid in the development and implementation of the sixth generation (6G) of wireless networks, and beyond. This paper shows recent regulatory and standard body rulings that are anticipating wireless products and services above 100 GHz and illustrates the viability of wireless cognition, hyper-accurate position location, sensing, and imaging. This paper also presents approaches and results that show how long distance mobile communications will be supported to above 800 GHz since the antenna gains are able to overcome air-induced attenuation, and present methods that reduce the computational complexity and simplify the signal processing used in adaptive antenna arrays, by exploiting the Special Theory of Relativity to create a cone of silence in over-sampled antenna arrays that improve performance for digital phased array antennas. Also, new results that give insights into power efficient beam steering algorithms, and new propagation and partition loss models above 100 GHz are given, and promising imaging, array processing, and position location results are presented. The implementation of spatial consistency at THz frequencies, an important component of channel modeling that considers minute changes and correlations over space, is also discussed. This paper offers the first in-depth look at the vast applications of THz wireless products and applications and provides approaches for how to reduce power and increase performance across several problem domains, giving early evidence that THz techniques are compelling and available for future wireless communications.

1,352 citations

Journal ArticleDOI
TL;DR: This article presents a large-dimensional and autonomous network architecture that integrates space, air, ground, and underwater networks to provide ubiquitous and unlimited wireless connectivity and identifies several promising technologies for the 6G ecosystem.
Abstract: A key enabler for the intelligent information society of 2030, 6G networks are expected to provide performance superior to 5G and satisfy emerging services and applications. In this article, we present our vision of what 6G will be and describe usage scenarios and requirements for multi-terabyte per second (Tb/s) and intelligent 6G networks. We present a large-dimensional and autonomous network architecture that integrates space, air, ground, and underwater networks to provide ubiquitous and unlimited wireless connectivity. We also discuss artificial intelligence (AI) and machine learning [1], [2] for autonomous networks and innovative air-interface design. Finally, we identify several promising technologies for the 6G ecosystem, including terahertz (THz) communications, very-large-scale antenna arrays [i.e., supermassive (SM) multiple-input, multiple-output (MIMO)], large intelligent surfaces (LISs) and holographic beamforming (HBF), orbital angular momentum (OAM) multiplexing, laser and visible-light communications (VLC), blockchain-based spectrum sharing, quantum communications and computing, molecular communications, and the Internet of Nano-Things.

1,332 citations

Journal ArticleDOI
TL;DR: Potential technologies for 6G to enable mobile AI applications, as well as AI-enabled methodologies for6G network design and optimization are discussed.
Abstract: The recent upsurge of diversified mobile applications, especially those supported by AI, is spurring heated discussions on the future evolution of wireless communications. While 5G is being deployed around the world, efforts from industry and academia have started to look beyond 5G and conceptualize 6G. We envision 6G to undergo an unprecedented transformation that will make it substantially different from the previous generations of wireless cellular systems. In particular, 6G will go beyond mobile Internet and will be required to support ubiquitous AI services from the core to the end devices of the network. Meanwhile, AI will play a critical role in designing and optimizing 6G architectures, protocols, and operations. In this article, we discuss potential technologies for 6G to enable mobile AI applications, as well as AI-enabled methodologies for 6G network design and optimization. Key trends in the evolution to 6G will also be discussed.

1,245 citations

Journal ArticleDOI
27 May 2011
TL;DR: Approaches to the design of intelligent waveforms, that are suitable for simultaneously performing both data transmission and radar sensing, are proposed, based on classical phase-coded waveforms utilized in wireless communications.
Abstract: Since traditional radar signals are “unintelligent,” regarding the amount of information they convey on the bandwidth they occupy, a joint radar and wireless communication system would constitute a unique platform for future intelligent transportation networks effecting the essential tasks of environmental sensing and the allocation of ad-hoc communication links, in terms of both spectrum efficiency and cost-effectiveness. In this paper, approaches to the design of intelligent waveforms, that are suitable for simultaneously performing both data transmission and radar sensing, are proposed. The approach is based on classical phase-coded waveforms utilized in wireless communications. In particular, requirements that allow for employing such signals for radar measurements with high dynamic range are investigated. Also, a variety of possible radar processing algorithms are discussed. Moreover, the applicability of multiple antenna techniques for direction-of-arrival estimation is considered. In addition to theoretical considerations, the paper presents system simulations and measurement results of complete “RadCom” systems, demonstrating the practical feasibility of integrated communications and radar applications.

897 citations