scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4.

TL;DR: This work presents a novel and scalable approach to gene expression engineering that allows for real-time annotation of gene expression changes in response to cancerigenicity and shows promise in finding novel and efficient treatments for cancer.
Abstract: 1 Laboratory For Molecular Cancer Biology, Flanders Interuniversity Institute for Biotechnology (VIB), University of Ghent, Technologiepark, 927, Ghent B9052, Belgium 2 Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, CA 92037, USA 3 Gene Expression and Diseases Unit, Institut Pasteur, Paris, France 4 The University of Texas Graduate School of Biomedical Sciences and department of Molecular Genetics, Section of Cancer Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA * Corresponding author: J-C Marine, Laboratory For Molecular Cancer Biology, VIB, Technologiepark, 927, Ghent B-9052, Belgium. Tel: þ 32-93-313-640; Fax: þ 32-93-313-516; E-mail: chris.marine@dmbr.ugent.be

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: It is shown here that following double-strand break DNA formation, ASAP directly interacts with and stabilizes p53 by enhancing its p300-mediated acetylation and blocking its MDM2-mediated ubiquitination and degradation, leading to an increase of p53 transcriptional activity.
Abstract: p53 is a key tumor suppressor that controls DNA damage response and genomic integrity. In response to genotoxic stress, p53 is stabilized and activated, resulting in controlled activation of genes involved in cell cycle arrest, DNA repair and/or apoptosis. ASAP is a centrosome- and spindle-associated protein, the deregulation of which induces severe mitotic defects. We show here that following double-strand break DNA formation, ASAP directly interacts with and stabilizes p53 by enhancing its p300-mediated acetylation and blocking its MDM2-mediated ubiquitination and degradation, leading to an increase of p53 transcriptional activity. Upon DNA damage, ASAP is transiently accumulated before being degraded upon persistent damage. This work links the p53 response with the cytoskeleton and confirms that the DNA-damaging signaling pathway is coordinated by centrosomal proteins. We reveal the existence of a new pathway through which ASAP signals the DNA damage response by regulating the p300-MDM2-p53 loop. These results point out ASAP as a possible target for the design of drugs to sensitize radio-resistant tumors.

15 citations

Journal ArticleDOI
TL;DR: This review focuses on the recent progress in developing small-molecule inhibitors of the MDM2 protein by covering the following approaches that inhibit the function of the p53–MDM2 axis.
Abstract: The potentiation of p53 activity through inhibition of its negative regulator MDM2 is an attractive strategy for anticancer therapy. Much progress has been made in the last decade in a diverse range of areas related to p53 and MDM2. This review focuses on the recent progress in developing small-molecule inhibitors of the MDM2 protein by covering the following approaches that inhibit the function of the p53–MDM2 axis: (1) direct binding to MDM2, (2) direct binding to p53, (3) targeted degradation of MDM2 by the PROTAC approach, and (4) inhibition of MDM2/MDM4 interaction. Given the importance of p53 in cancer development, we hope that research in this area will lead to anticancer drugs in the not too distant future.

14 citations

Journal ArticleDOI
Heng Yang1, Zhi Zheng, Lisa Y. Zhao, Qiang Li, Daiqing Liao 
TL;DR: This work provides the first biochemical evidence for antiviral function of Mdm2 and Mdm4 and that viruses employ efficient countermeasure to ensure viral replication.
Abstract: Successful viral replication entails elimination or bypass of host antiviral mechanisms. Here, we show that shRNA-mediated knockdown of murine double minute (Mdm2) and its paralog Mdm4 enhanced the expression of early and late viral gene products during adenovirus (HAdV) infection. Remarkably, whereas the expression of HAdV genes was low in p53-deficient mouse embryonic fibroblasts (p53KO MEFs), the HAdV early gene products were efficiently expressed in Mdm2/p53 double-knockout (DKO) and Mdm4/p53 DKO MEFs, and viral capsid proteins were produced in Mdm2/p53 DKO MEFs. Thus, Mdm2 and Mdm4 seem to have potent antiviral property. In cells infected with wt HAdV or a mutant virus lacking the E1B-55K gene (dl1520), both Mdm2 and Mdm4 were rapidly depleted, whereas replication-deficient mutant viruses (Ad-GFP) or ΔpTP with deletions within the coding sequence of preterminal binding protein failed to induce their downregulation. Reduced expression of Mdm2 and Mdm4 was not due to general shutoff of host protein syn...

14 citations

Journal ArticleDOI
TL;DR: A pyrazolo-pyridine analogue showing activity against both CK1 and CHK1 kinases that lead to p53 pathway stabilisation, thus having pharmacological similarities to the p53-activator Nutlin-3 is reported, demonstrating the emerging potential utility of multivalent kinase inhibitors.

14 citations

Journal ArticleDOI
TL;DR: The recombinant dual-target MDM2/MDMX inhibitor could reverse doxorubicin resistance via the activation of the TAB1/TAK1/p38 MAPK pathway in wild-type p53 multidrug-resistant BC.
Abstract: Chemotherapy resistance represents a major obstacle for the treatment of patients with breast cancer (BC) and greatly restricts the therapeutic effect of the first-line chemotherapeutic agent doxorubicin (DOX). The present study aimed to investigate the feasibility of the recombinant dual-target murine double minute 2 (MDM2) and murine double minute X (MDMX) inhibitor in reversing the DOX resistance of BC. Both DOX-resistant human breast carcinoma cell lines exhibited a multidrug resistance (MDR) phenotype. The ability of the dual-target MDM2/MDMX inhibitor in reversing doxorubicin resistance was subsequently verified, (9.15 and 13.92 - fold reversal indexes) respectively. We observed that the MDM2/MDMX inhibitor in combination with DOX could suppress proliferation, promote cell cycle arrest and induce apoptosis. In addition, it was capable of reducing rhodamine123 efflux in DOX-resistance BC cell lines and further played a key role in BC nude mice model. The groups that were treated with the combination of the drugs had decreased P-glycoprotein/multidrug resistance-associated protein/cdc 2/Bcl-2 expression and increased CyclinB1/Bax expression. These effects were caused due to activation of the transforming growth factor β-activated kinase 1 (TAK1)-binding protein 1 (TAB1)/TAK1/p38 mitogen-activated protein kinase (MAPK) signaling pathway, as shown by small interfering RNA (siRNA) silencing and immumohistochemical staining of BC tissue sections. Furthermore, high MDM2/MDMX expression was positively associated with weak TAB1 expression in BC patients. Therefore, the recombinant dual-target MDM2/MDMX inhibitor could reverse doxorubicin resistance via the activation of the TAB1/TAK1/p38 MAPK pathway in wild-type p53 multidrug-resistant BC.

14 citations

References
More filters
Journal ArticleDOI
19 Nov 1993-Cell
TL;DR: A gene is identified, named WAF1, whose induction was associated with wild-type but not mutant p53 gene expression in a human brain tumor cell line and that could be an important mediator of p53-dependent tumor growth suppression.

8,339 citations

Journal ArticleDOI
06 Feb 2004-Science
TL;DR: In this article, the authors identify potent and selective small-molecule antagonists of MDM2 and confirm their mode of action through the crystal structures of complexes, leading to cell cycle arrest, apoptosis, and growth inhibition of human tumor xenografts.
Abstract: MDM2 binds the p53 tumor suppressor protein with high affinity and negatively modulates its transcriptional activity and stability. Overexpression of MDM2, found in many human tumors, effectively impairs p53 function. Inhibition of MDM2-p53 interaction can stabilize p53 and may offer a novel strategy for cancer therapy. Here, we identify potent and selective small-molecule antagonists of MDM2 and confirm their mode of action through the crystal structures of complexes. These compounds bind MDM2 in the p53-binding pocket and activate the p53 pathway in cancer cells, leading to cell cycle arrest, apoptosis, and growth inhibition of human tumor xenografts in nude mice.

4,397 citations

Journal ArticleDOI
15 May 1997-Nature
TL;DR: It is proposed that the Mdm2-promoted degradation of p53 provides a new mechanism to ensure effective termination of the p53 signal.
Abstract: The p53 tumour-suppressor protein exerts antiproliferative effects, including growth arrest and apoptosis, in response to various types of stress. The activity of p53 is abrogated by mutations that occur frequently in tumours, as well as by several viral and cellular proteins. The Mdm2 oncoprotein is a potent inhibitor of p53. Mdm2 binds the transcriptional activation domain of p53 and blocks its ability to regulate target genes and to exert antiproliferative effects. On the other hand, p53 activates the expression of the mdm2 gene in an autoregulatory feedback loop. The interval between p53 activation and consequent Mdm2 accumulation defines a time window during which p53 exerts its effects. We now report that Mdm2 also promotes the rapid degradation of p53 under conditions in which p53 is otherwise stabilized. This effect of Mdm2 requires binding of p53; moreover, a small domain of p53, encompassing the Mdm2-binding site, confers Mdm2-dependent detstabilization upon heterologous proteins. Raised amounts of Mdm2 strongly repress mutant p53 accumulation in tumour-derived cells. During recovery from DNA damage, maximal Mdm2 induction coincides with rapid p53 loss. We propose that the Mdm2-promoted degradation of p53 provides a new mechanism to ensure effective termination of the p53 signal.

4,311 citations

Journal ArticleDOI
15 May 1997-Nature
TL;DR: It is shown that interaction with Mdm2 can also result in a large reduction in p53 protein levels through enhanced proteasome-dependent degradation, which may contribute to the maintenance of low p53 concentrations in normal cells.
Abstract: The tumour-suppressor p53 is a short-lived protein that is maintained at low, often undetectable, levels in normal cells. Stabilization of the protein in response to an activating signal, such as DNA damage, results in a rapid rise in p53 levels and subsequent inhibition of cell growth. Tight regulation of p53 function is critical for normal cell growth and development, and one mechanism by which p53 function is controlled is through interaction with the Mdm2 protein. Mdm2 inhibits p53 cell-cycle arrest and apoptic functions and we show here that interaction with Mdm2 can also result in a large reduction in p53 protein levels through enhanced proteasome-dependent degradation. Endogenous levels of Mdm2 are sufficient to regulate p53 stability, and overexpression of Mdm2 can reduce the amount of endogenous p53. Because mdm2 is transcriptionally activated by p53, this degradative pathway may contribute to the maintenance of low p53 concentrations in normal cells. Furthermore, mechanisms regulating the Mdm2-induced degradation of p53 may play a role in controlling the extent and duration of the p53 response.

3,298 citations

Journal ArticleDOI
TL;DR: The data suggest that the MDM2 protein, which is induced by p53, functions as a ubiquitin ligase, E3, in human papillomavirus‐uninfected cells which do not have E6 protein.

1,962 citations