scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Keeping p53 in check: essential and synergistic functions of Mdm2 and Mdm4.

TL;DR: This work presents a novel and scalable approach to gene expression engineering that allows for real-time annotation of gene expression changes in response to cancerigenicity and shows promise in finding novel and efficient treatments for cancer.
Abstract: 1 Laboratory For Molecular Cancer Biology, Flanders Interuniversity Institute for Biotechnology (VIB), University of Ghent, Technologiepark, 927, Ghent B9052, Belgium 2 Salk Institute for Biological Studies, Gene Expression Laboratory, La Jolla, CA 92037, USA 3 Gene Expression and Diseases Unit, Institut Pasteur, Paris, France 4 The University of Texas Graduate School of Biomedical Sciences and department of Molecular Genetics, Section of Cancer Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA * Corresponding author: J-C Marine, Laboratory For Molecular Cancer Biology, VIB, Technologiepark, 927, Ghent B-9052, Belgium. Tel: þ 32-93-313-640; Fax: þ 32-93-313-516; E-mail: chris.marine@dmbr.ugent.be

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Dual MDM2/MDMX antagonists restored p53 apoptotic activity in the presence of high levels of MDMX and may offer a more effective therapeutic modality for MDMX-overexpressing cancers.
Abstract: Activation of p53 tumor suppressor by antagonizing its negative regulator murine double minute (MDM)2 has been considered an attractive strategy for cancer therapy and several classes of p53-MDM2 binding inhibitors have been developed. However, these compounds do not inhibit the p53-MDMX interaction, and their effectiveness can be compromised in tumors overexpressing MDMX. Here, we identify small molecules that potently block p53 binding with both MDM2 and MDMX by inhibitor-driven homo- and/or heterodimerization of MDM2 and MDMX proteins. Structural studies revealed that the inhibitors bind into and occlude the p53 pockets of MDM2 and MDMX by inducing the formation of dimeric protein complexes kept together by a dimeric small-molecule core. This mode of action effectively stabilized p53 and activated p53 signaling in cancer cells, leading to cell cycle arrest and apoptosis. Dual MDM2/MDMX antagonists restored p53 apoptotic activity in the presence of high levels of MDMX and may offer a more effective therapeutic modality for MDMX-overexpressing cancers.

186 citations


Cites background from "Keeping p53 in check: essential and..."

  • ...This is why they are frequently overproduced through gene amplification and/or overexpression in tumors that retain wildtype p53 (14)....

    [...]

  • ...The functional relationship between MDM2 and MDMX is still being refined at the molecular level, but it is well established that these two negative regulators play a critical role in controlling p53 tumor-suppressor function in normal cells (2, 14)....

    [...]

  • ...Similar to MDM2, MDMX overexpression has been shown to effectively disable this function by inhibiting p53 transcriptional activity (6, 14)....

    [...]

Journal ArticleDOI
TL;DR: It is demonstrated that MDM2 and MDMX function as an integral complex in p53 control, providing insights into the nonredundant nature of the function of MDM1 and MDX, and the finding that concomitant deletion of p53 completely rescued the embryonic lethality in MdmxC462A/ C462A homozygous mice.
Abstract: There are currently two distinct models proposed to explain why both MDM2 and MDMX are required in p53 control, with a key difference centered on whether these two p53 inhibitors work together or independently. To test these two competing models, we generated knockin mice expressing a point mutation MDMX mutant (C462A) that is defective in MDM2 binding. This approach allowed a targeted disassociation of the MDM2/MDMX heterocomplex without affecting the ability of MDMX to bind to p53, and while leaving the MDM2 protein itself completely untouched. Significantly, MdmxC462A/C462A homozygous mice died at approximately day 9.5 of embryonic development, as the result of a combination of apoptosis and decreased cell proliferation, as shown by TUNEL and BrdU incorporation assays, respectively. Interestingly, even though the MDMX mutant protein abundance was found slightly elevated in the MdmxC462A/C462A homozygous embryos, both the abundance and activity of p53 were markedly increased. A p53-dependent death was demonstrated by the finding that concomitant deletion of p53 completely rescued the embryonic lethality in MdmxC462A/C462A homozygous mice. Our data demonstrate that MDM2 and MDMX function as an integral complex in p53 control, providing insights into the nonredundant nature of the function of MDM2 and MDMX.

176 citations

Journal ArticleDOI
TL;DR: The p53 transcription factor and NFκB, both of which have evolved to respond to different types of stress, have adopted opposite strategies and cannot function in the same cell at the same time.
Abstract: The p53 transcription factor responds to a variety of intrinsic stresses, such as DNA damage, hypoxia, and even oncogene activation. NF-κB responds to a large number of extrinsic stresses such as cytokine activation and infectious diseases. The p53 tumor suppressor limits the consequences of stress by initiating cell death, senescence, or cell cycle arrest and promotes metabolic patterns in the cell to favor oxidative phosphorylation. NF-κB, the oncogene, promotes cell division, which initiates the innate and adaptive immune responses utilizing large amounts of glucose in aerobic glycolysis, resulting in the synthesis of substrates for cell division. Thus these two transcription factors, both of which have evolved to respond to different types of stress, have adopted opposite strategies and cannot function in the same cell at the same time. On activation of one of these transcription factors, the other is inactivated. This is achieved at several places in the p53 and NF-κB pathways where regulatory proteins act on both p53 and NF-κB with opposite functional consequences. These internodal sites create core regulatory circuits essential for integrating two central pathways in cells.

174 citations


Cites background from "Keeping p53 in check: essential and..."

  • ...MDM-2 functions in a heterodimeric complex with MDM-4, a related protein that can bind to p53 and MDM-4 and regulates MDM-2 activity (5)....

    [...]

Journal ArticleDOI
TL;DR: HIPK2 is established as an MDM2 target and support a model in which, upon nonsevere DNA damage, p53 represses its own phosphorylation at Ser46 due to HIPK2 degradation, supporting the notion that the cell-cycle-arresting functions of p53 include active inhibition of the apoptotic ones.

173 citations


Cites background from "Keeping p53 in check: essential and..."

  • ...MDM2 is responsible for the maintenance of the basal, inactive state of p53 under normal conditions (Marine et al., 2006)....

    [...]

Journal ArticleDOI
TL;DR: It is shown that oligomers containing both wild‐type MDM2 and a C‐terminal mutant protein retain E3 function both in auto‐degradation and degradation of p53, and Interestingly, the E3 activity of C‐ terminal point mutants ofMDM2 can also be supported by interaction with wild‐ type MDMX, suggesting that MDMX can directly contribute to E3function.
Abstract: MDM2 (HDM2) is a ubiquitin ligase that can target the p53 tumor suppressor protein for degradation The RING domain is essential for the E3 activity of MDM2, and we show here that the extreme C-terminal tail of MDM2 is also critical for efficient E3 activity Loss of E3 function in MDM2 mutants deleted of the C-terminal tail correlated with a failure of these mutants to oligomerize with MDM2, or with the related protein MDMX (HDMX) However, MDM2 containing point mutations within the C-terminus that inactivated E3 function retained the ability to oligomerize with the wild-type MDM2 RING domain and MDMX, and our results indicate that oligomers containing both wild-type MDM2 and a C-terminal mutant protein retain E3 function both in auto-degradation and degradation of p53 Interestingly, the E3 activity of C-terminal point mutants of MDM2 can also be supported by interaction with wild-type MDMX, suggesting that MDMX can directly contribute to E3 function

173 citations


Cites background from "Keeping p53 in check: essential and..."

  • ...Studies in mice have indicated that an effect of MDMX on p53 stability, through the modulation of MDM2, can be seen in some but not all tissues (Marine et al, 2006)....

    [...]

  • ...The MDM2-related protein MDMX also plays an important role in the regulation of p53, both by binding directly to p53 and through interaction with MDM2 (Marine et al, 2006)....

    [...]

  • ...The current data most strongly support a model in which MDM2 regulates p53 by targeting it for degradation, whereas MDMX functions by directly inhibiting the transcriptional activity of p53 by binding to its N-terminal transactivation domain (Marine et al, 2006)....

    [...]

References
More filters
Journal ArticleDOI
19 Nov 1993-Cell
TL;DR: A gene is identified, named WAF1, whose induction was associated with wild-type but not mutant p53 gene expression in a human brain tumor cell line and that could be an important mediator of p53-dependent tumor growth suppression.

8,339 citations

Journal ArticleDOI
06 Feb 2004-Science
TL;DR: In this article, the authors identify potent and selective small-molecule antagonists of MDM2 and confirm their mode of action through the crystal structures of complexes, leading to cell cycle arrest, apoptosis, and growth inhibition of human tumor xenografts.
Abstract: MDM2 binds the p53 tumor suppressor protein with high affinity and negatively modulates its transcriptional activity and stability. Overexpression of MDM2, found in many human tumors, effectively impairs p53 function. Inhibition of MDM2-p53 interaction can stabilize p53 and may offer a novel strategy for cancer therapy. Here, we identify potent and selective small-molecule antagonists of MDM2 and confirm their mode of action through the crystal structures of complexes. These compounds bind MDM2 in the p53-binding pocket and activate the p53 pathway in cancer cells, leading to cell cycle arrest, apoptosis, and growth inhibition of human tumor xenografts in nude mice.

4,397 citations

Journal ArticleDOI
15 May 1997-Nature
TL;DR: It is proposed that the Mdm2-promoted degradation of p53 provides a new mechanism to ensure effective termination of the p53 signal.
Abstract: The p53 tumour-suppressor protein exerts antiproliferative effects, including growth arrest and apoptosis, in response to various types of stress. The activity of p53 is abrogated by mutations that occur frequently in tumours, as well as by several viral and cellular proteins. The Mdm2 oncoprotein is a potent inhibitor of p53. Mdm2 binds the transcriptional activation domain of p53 and blocks its ability to regulate target genes and to exert antiproliferative effects. On the other hand, p53 activates the expression of the mdm2 gene in an autoregulatory feedback loop. The interval between p53 activation and consequent Mdm2 accumulation defines a time window during which p53 exerts its effects. We now report that Mdm2 also promotes the rapid degradation of p53 under conditions in which p53 is otherwise stabilized. This effect of Mdm2 requires binding of p53; moreover, a small domain of p53, encompassing the Mdm2-binding site, confers Mdm2-dependent detstabilization upon heterologous proteins. Raised amounts of Mdm2 strongly repress mutant p53 accumulation in tumour-derived cells. During recovery from DNA damage, maximal Mdm2 induction coincides with rapid p53 loss. We propose that the Mdm2-promoted degradation of p53 provides a new mechanism to ensure effective termination of the p53 signal.

4,311 citations

Journal ArticleDOI
15 May 1997-Nature
TL;DR: It is shown that interaction with Mdm2 can also result in a large reduction in p53 protein levels through enhanced proteasome-dependent degradation, which may contribute to the maintenance of low p53 concentrations in normal cells.
Abstract: The tumour-suppressor p53 is a short-lived protein that is maintained at low, often undetectable, levels in normal cells. Stabilization of the protein in response to an activating signal, such as DNA damage, results in a rapid rise in p53 levels and subsequent inhibition of cell growth. Tight regulation of p53 function is critical for normal cell growth and development, and one mechanism by which p53 function is controlled is through interaction with the Mdm2 protein. Mdm2 inhibits p53 cell-cycle arrest and apoptic functions and we show here that interaction with Mdm2 can also result in a large reduction in p53 protein levels through enhanced proteasome-dependent degradation. Endogenous levels of Mdm2 are sufficient to regulate p53 stability, and overexpression of Mdm2 can reduce the amount of endogenous p53. Because mdm2 is transcriptionally activated by p53, this degradative pathway may contribute to the maintenance of low p53 concentrations in normal cells. Furthermore, mechanisms regulating the Mdm2-induced degradation of p53 may play a role in controlling the extent and duration of the p53 response.

3,298 citations

Journal ArticleDOI
TL;DR: The data suggest that the MDM2 protein, which is induced by p53, functions as a ubiquitin ligase, E3, in human papillomavirus‐uninfected cells which do not have E6 protein.

1,962 citations