scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Kinetics of aquation and anation of ruthenium(II) arene anticancer complexes, acidity and X-ray structures of aqua adducts.

05 Dec 2003-Chemistry: A European Journal (John Wiley & Sons, Ltd)-Vol. 9, Iss: 23, pp 5810-5820
TL;DR: The aqua adducts of the anticancer complexes (X=biphenyl (Bip) 1, X=5,8,9,10-tetrahydroanthracene (THA) 2, X-DHA and THA 3; en=ethylenediamime) were separated by HPLC and characterised by mass spectrometry as the products of hydrolysis in water.
Abstract: The aqua adducts of the anticancer complexes [(eta(6)-X)Ru(en)Cl][PF(6)] (X=biphenyl (Bip) 1, X=5,8,9,10-tetrahydroanthracene (THA) 2, X=9,10-dihydroanthracene (DHA) 3; en=ethylenediamime) were separated by HPLC and characterised by mass spectrometry as the products of hydrolysis in water. The X-ray structures of the aqua complexes [(eta(6)-X)Ru(en)Y][PF(6)](n), X=Bip, Y=0.5 H(2)O/0.5 OH, n=1.5 (4), X=THA, Y=0.5 H(2)O/0.5 OH, n=1.5 (5 A), X=THA, Y=H(2)O, n=2 (5 B), and X=DHA, Y=H(2)O, n=2 (6), are reported. In complex 4 there is a large propeller twist of 45 degrees of the pendant phenyl ring with respect to the coordinated phenyl ring. Although the THA ligand in 5 A and 5 B is relatively flat, the DHA ring system in 6 is markedly bent (hinge bend ca. 35 degrees ) as in the chloro complex 3 (41 degrees ). The rates of aquation of 1-3 determined by UV/Vis spectroscopy at various ionic strengths and temperatures (1.23-2.59x10(-3) s(-1) at 298 K, I=0.1 M) are >20x faster than that of cisplatin. The reverse, anation reactions were very rapid on addition of 100 mM NaCl (a similar concentration to that in blood plasma). The aquation and anation reactions were about two times faster for the DHA and THA complexes compared to the biphenyl complex. The hydrolysis reactions appear to occur by an associative pathway. The pK(a) values of the aqua adducts were determined by (1)H NMR spectroscopy as 7.71 for 4, 8.01 for 5 and 7.89 for 6. At physiologically-relevant concentrations (0.5-5 microM) and temperature (310 K), the complexes will exist in blood plasma as >89 % chloro complex, whereas in the cell nucleus significant amounts (45-65 %) of the more reactive aqua adducts would be formed together with smaller amounts of the hydroxo complexes (9-25 %, pH 7.4, [Cl(-)]=4 mM).
Citations
More filters
Journal ArticleDOI
TL;DR: The quest for alternative drugs to the well-known cisplatin and its derivatives, which are still used in more than 50% of the treatment regimes for patients suffering from cancer, is highly needed, and organometallic compounds have recently been found to be promising anticancer drug candidates.
Abstract: The quest for alternative drugs to the well-known cisplatin and its derivatives, which are still used in more than 50% of the treatment regimes for patients suffering from cancer, is highly needed.1,2 Despite their tremendous success, these platinum compounds suffer from two main disadvantages: they are inefficient against platinum-resistant tumors, and they have severe side effects such as nephrotoxicity. The latter drawback is the consequence of the fact that the ultimate target of these drugs is ubiquitous: It is generally accepted that Pt anticancer drugs target DNA, which is present in all cells.3,4 Furthermore, as a consequence of its particular chemical structure, cisplatin in particular offers little possibility for rational improvements to increase its tumor specificity and thereby reduce undesired side effects. In this context, organometallic compounds, which are defined as metal complexes containing at least one direct, covalent metal−carbon bond, have recently been found to be promising anticancer drug candidates. Organometallics have a great structural variety (ranging from linear to octahedral and even beyond), have far more diverse stereochemistry than organic compounds (for an octahedral complex with six different ligands, 30 stereoisomers exist!), and by rational ligand design, provide control over key kinetic properties (such as hydrolysis rate of ligands). Furthermore, they are kinetically stable, usually uncharged, and relatively lipophilic and their metal atom is in a low oxidation state. Because of these fundamental differences compared to “classical coordination metal complexes”, organometallics offer ample opportunities in the design of novel classes of medicinal compounds, potentially with new metal-specific modes of action. Interestingly, all the typical classes of organometallics such as metallocenes, half-sandwich, carbene-, CO-, or π-ligands, which have been widely used for catalysis or biosensing purposes, have now also found application in medicinal chemistry (see Figure ​Figure11 for an overview of these typical classes of organometallics). Figure 1 Summary of the typical classes of organometallic compounds used in medicinal chemistry. In this Perspective, we report on the recent advances in the discovery of organometallics with proven antiproliferative activity. We are emphasizing those compounds where efforts have been made to identify their molecular target and mode of action by biochemical or cell biology studies. This Perspective covers more classes of compounds and in more detail than a recent tutorial review by Hartinger and Dyson.(5) Furthermore, whereas recent reviews and book contributions attest to the rapid development of bioorganometallic chemistry in general,6,7 this Perspective focuses on their potential application as anticancer chemotherapeutics. Another very recent review article categorizes inorganic anticancer drug candidates by their modes of action.(8) It should be mentioned that a full description of all currently investigated types of compounds is hardly possible anymore in a concise review. For example, a particularly promising class of organometallic anticancer compounds, namely, radiolabeled organometallics, has been omitted for space limitations. Recent developments of such compounds have been reviewed in detail by Alberto.(9)

1,364 citations

Journal ArticleDOI
TL;DR: This review focuses on the likely mechanisms of action of ruthenium(ii)-based anticancer drugs and the relationship between their chemical structures and biological properties, and highlights the catalytic activity and the photoinduced activation of r Ruthenium (ii) complexes, their targeted delivery, and their activity in nanomaterial systems.
Abstract: Cancer is rapidly becoming the top killer in the world. Most of the FDA approved anticancer drugs are organic molecules, while metallodrugs are very scarce. The advent of the first metal based therapeutic agent, cisplatin, launched a new era in the application of transition metal complexes for therapeutic design. Due to their unique and versatile biochemical properties, ruthenium-based compounds have emerged as promising anti-cancer agents that serve as alternatives to cisplatin and its derivertives. Ruthenium(iii) complexes have successfully been used in clinical research and their mechanisms of anticancer action have been reported in large volumes over the past few decades. Ruthenium(ii) complexes have also attracted significant attention as anticancer candidates; however, only a few of them have been reported comprehensively. In this review, we discuss the development of ruthenium(ii) complexes as anticancer candidates and biocatalysts, including arene ruthenium complexes, polypyridyl ruthenium complexes, and ruthenium nanomaterial complexes. This review focuses on the likely mechanisms of action of ruthenium(ii)-based anticancer drugs and the relationship between their chemical structures and biological properties. This review also highlights the catalytic activity and the photoinduced activation of ruthenium(ii) complexes, their targeted delivery, and their activity in nanomaterial systems.

727 citations

Journal ArticleDOI
TL;DR: Initial studies on amino acids and nucleotides suggest that kinetic and thermodynamic control over a wide spectrum of reactions of Ru(II) arene complexes with biomolecules can be achieved.

663 citations

Journal ArticleDOI
TL;DR: Progress in identifying and defining target sites has been accelerated recently by advances in proteomics, genomics and metal speciation analysis, and examples of metal compounds and chelating agents (enzyme inhibitors) currently in clinical use, clinical trials or preclinical development are highlighted.

610 citations

Journal ArticleDOI
TL;DR: Neutral or cationic arene ruthenium complexes providing both hydrophilic as well as hydrophobic properties due to the robustness of the rUThenium-arene unit hold a high potential for the development of metal-based anticancer drugs.
Abstract: Neutral or cationic arene ruthenium complexes providing both hydrophilic as well as hydrophobic properties due to the robustness of the ruthenium–arene unit hold a high potential for the development of metal-based anticancer drugs. Mononuclear arene ruthenium complexes containing P- or N-donor ligands or N,N-, N,O- or O,O-chelating ligands, dinuclear arene ruthenium systems with adjustable organic linkers, trinuclear arene ruthenium clusters containing an oxo cap, tetranuclear arene ruthenium porphyrin derivatives that are photoactive, as well as hexanuclear ruthenium cages that are either empty or filled with other molecules have been shown to be active against a variety of cancer cells.

554 citations