scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Kinetics of elementary reactions in low-temperature autoignition chemistry

TL;DR: In this article, a review concentrates on recent developments in the study of elementary reaction kinetics in relation to the modeling and prediction of low-temperature combustion and autoignition, with specific focus placed on the critical alkylperoxy and hydroperoxyalkyl reactions.
About: This article is published in Progress in Energy and Combustion Science.The article was published on 2011-08-01. It has received 555 citations till now. The article focuses on the topics: Autoignition temperature.
Citations
More filters
Journal ArticleDOI
TL;DR: A detailed overview of recent results on alcohol combustion can be found in this paper, with a particular emphasis on butanols and other linear and branched members of the alcohol family, from methanol to hexanols.

676 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive chemical kinetic model for all the four isomers of butanol (e.g., 1-, 2-, iso- and tert-butanol) is presented.

489 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the physical phenomena governing homogeneous charge compression ignition (HCCI) operation, with particular emphasis on high load conditions, is provided in this paper, with suggestions on how to inexpensively enable low emissions of all regulated emissions.

481 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provided deep insights into the processes occurring during knocking combustion in spark ignition engines, and future research directions, such as turbulence-shock-reaction interaction theory, detonation suppression and utilization, and super-knock solutions, are also discussed, including use of exhaust gas recirculation (EGR), injection strategy, and the integration of a high tumble - high EGR-Atkinson/Miller cycle.

468 citations

Journal ArticleDOI
TL;DR: The most prominent characteristic of new combustion modes, such as HCCI, Stratified-charge Compression-Ignition (SCCI), and Low-Temperature Combustion (LTC), is the requirement of creating a homogenous mixture or controllable stratified mixture prior to ignition as discussed by the authors.

466 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a semi-empirical exchange correlation functional with local spin density, gradient, and exact exchange terms was proposed. But this functional performed significantly better than previous functionals with gradient corrections only, and fits experimental atomization energies with an impressively small average absolute deviation of 2.4 kcal/mol.
Abstract: Despite the remarkable thermochemical accuracy of Kohn–Sham density‐functional theories with gradient corrections for exchange‐correlation [see, for example, A. D. Becke, J. Chem. Phys. 96, 2155 (1992)], we believe that further improvements are unlikely unless exact‐exchange information is considered. Arguments to support this view are presented, and a semiempirical exchange‐correlation functional containing local‐spin‐density, gradient, and exact‐exchange terms is tested on 56 atomization energies, 42 ionization potentials, 8 proton affinities, and 10 total atomic energies of first‐ and second‐row systems. This functional performs significantly better than previous functionals with gradient corrections only, and fits experimental atomization energies with an impressively small average absolute deviation of 2.4 kcal/mol.

87,732 citations

Journal ArticleDOI
TL;DR: Numerical calculations on a number of atoms, positive ions, and molecules, of both open- and closed-shell type, show that density-functional formulas for the correlation energy and correlation potential give correlation energies within a few percent.
Abstract: A correlation-energy formula due to Colle and Salvetti [Theor. Chim. Acta 37, 329 (1975)], in which the correlation energy density is expressed in terms of the electron density and a Laplacian of the second-order Hartree-Fock density matrix, is restated as a formula involving the density and local kinetic-energy density. On insertion of gradient expansions for the local kinetic-energy density, density-functional formulas for the correlation energy and correlation potential are then obtained. Through numerical calculations on a number of atoms, positive ions, and molecules, of both open- and closed-shell type, it is demonstrated that these formulas, like the original Colle-Salvetti formulas, give correlation energies within a few percent.

84,646 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed study of correlation effects in the oxygen atom was conducted, and it was shown that primitive basis sets of primitive Gaussian functions effectively and efficiently describe correlation effects.
Abstract: In the past, basis sets for use in correlated molecular calculations have largely been taken from single configuration calculations. Recently, Almlof, Taylor, and co‐workers have found that basis sets of natural orbitals derived from correlated atomic calculations (ANOs) provide an excellent description of molecular correlation effects. We report here a careful study of correlation effects in the oxygen atom, establishing that compact sets of primitive Gaussian functions effectively and efficiently describe correlation effects i f the exponents of the functions are optimized in atomic correlated calculations, although the primitive (s p) functions for describing correlation effects can be taken from atomic Hartree–Fock calculations i f the appropriate primitive set is used. Test calculations on oxygen‐containing molecules indicate that these primitive basis sets describe molecular correlation effects as well as the ANO sets of Almlof and Taylor. Guided by the calculations on oxygen, basis sets for use in correlated atomic and molecular calculations were developed for all of the first row atoms from boron through neon and for hydrogen. As in the oxygen atom calculations, it was found that the incremental energy lowerings due to the addition of correlating functions fall into distinct groups. This leads to the concept of c o r r e l a t i o n c o n s i s t e n t b a s i s s e t s, i.e., sets which include all functions in a given group as well as all functions in any higher groups. Correlation consistent sets are given for all of the atoms considered. The most accurate sets determined in this way, [5s4p3d2f1g], consistently yield 99% of the correlation energy obtained with the corresponding ANO sets, even though the latter contains 50% more primitive functions and twice as many primitive polarization functions. It is estimated that this set yields 94%–97% of the total (HF+1+2) correlation energy for the atoms neon through boron.

26,705 citations

Journal ArticleDOI
TL;DR: In this article, a perturbation theory for treating a system of n electrons in which the Hartree-Fock solution appears as the zero-order approximation was developed, and it was shown by this development that the first order correction for the energy and the charge density of the system is zero.
Abstract: A perturbation theory is developed for treating a system of n electrons in which the Hartree-Fock solution appears as the zero-order approximation. It is shown by this development that the first order correction for the energy and the charge density of the system is zero. The expression for the second-order correction for the energy greatly simplifies because of the special property of the zero-order solution. It is pointed out that the development of the higher approximation involves only calculations based on a definite one-body problem.

12,067 citations

Journal ArticleDOI
TL;DR: The Gaussian-2 theoretical procedure (G2 theory) as discussed by the authors was proposed to calculate molecular energies (atomization energies, ionization potentials, and electron affinities) of compounds containing first and second-row atoms.
Abstract: The Gaussian‐2 theoretical procedure (G2 theory), based on a b i n i t i o molecular orbital theory, for calculation of molecular energies (atomization energies, ionization potentials,electron affinities, and proton affinities) of compounds containing first‐ (Li–F) and second‐row atoms (Na–Cl) is presented. This new theoretical procedure adds three features to G1 theory [J. Chem. Phys. 9 0, 5622 (1989)] including a correction for nonadditivity of diffuse‐s p and 2d f basis set extensions, a basis set extension containing a third d function on nonhydrogen and a second p function on hydrogen atoms, and a modification of the higher level correction. G2 theory is a significant improvement over G1 theory because it eliminates a number of deficiencies present in G1 theory. Of particular importance is the improvement in atomization energies of ionic molecules such as LiF and hydrides such as C2H6, NH3, N2H4, H2O2, and CH3SH. The average absolute deviation from experiment of atomization energies of 39 first‐row compounds is reduced from 1.42 to 0.92 kcal/mol. In addition, G2 theory gives improved performance for hypervalent species and electron affinities of second‐row species (the average deviation from experiment of electron affinities of second‐row species is reduced from 1.94 to 1.08 kcal/mol). Finally, G2 atomization energies for another 43 molecules, not previously studied with G1 theory, many of which have uncertain experimental data, are presented and differences with experiment are assessed.

3,216 citations