scispace - formally typeset
Search or ask a question
Journal ArticleDOI

KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities.

06 Sep 2005-Current Biology (Cell Press)-Vol. 15, Iss: 17, pp 1560-1565
TL;DR: It is proposed that KNOX proteins may act as general orchestrators of growth-regulator homeostasis at the shoot apex of Arabidopsis by simultaneously activating CK and repressing GA biosynthesis, thus promoting meristem activity.
About: This article is published in Current Biology.The article was published on 2005-09-06 and is currently open access. It has received 631 citations till now. The article focuses on the topics: Meristem maintenance & Meristem.
Citations
More filters
Journal ArticleDOI
TL;DR: Current understanding of the GA biosynthesis and deactivation pathways in plants and fungi is summarized, and how GA concentrations in plant tissues are regulated during development and in response to environmental stimuli is discussed.
Abstract: Bioactive gibberellins (GAs) are diterpene plant hormones that are biosynthesized through complex pathways and control diverse aspects of growth and development. Biochemical, genetic, and genomic approaches have led to the identification of the majority of the genes that encode GA biosynthesis and deactivation enzymes. Recent studies have highlighted the occurrence of previously unrecognized deactivation mechanisms. It is now clear that both GA biosynthesis and deactivation pathways are tightly regulated by developmental, hormonal, and environmental signals, consistent with the role of GAs as key growth regulators. In some cases, the molecular mechanisms for fine-tuning the hormone levels are beginning to be uncovered. In this review, I summarize our current understanding of the GA biosynthesis and deactivation pathways in plants and fungi, and discuss how GA concentrations in plant tissues are regulated during development and in response to environmental stimuli.

1,643 citations

Journal ArticleDOI
TL;DR: Recent advances are reported, updating current knowledge on classical defense hormones SA, JA, and ET, and the roles of auxin, abscisic acid (ABA), cytokinins (CKs), and brassinosteroids in molding plant-pathogen interactions are updated.
Abstract: Until recently, most studies on the role of hormones in plant-pathogen interactions focused on salicylic acid (SA), jasmonic acid (JA), and ethylene (ET). It is now clear that pathogen-induced modulation of signaling via other hormones contributes to virulence. A picture is emerging of complex crosstalk and induced hormonal changes that modulate disease and resistance, with outcomes dependent on pathogen lifestyles and the genetic constitution of the host. Recent progress has revealed intriguing similarities between hormone signaling mechanisms, with gene induction responses often achieved by derepression. Here, we report on recent advances, updating current knowledge on classical defense hormones SA, JA, and ET, and the roles of auxin, abscisic acid (ABA), cytokinins (CKs), and brassinosteroids in molding plant-pathogen interactions. We highlight an emerging theme that positive and negative regulators of these disparate hormone signaling pathways are crucial regulatory targets of hormonal crosstalk in disease and defense.

1,554 citations


Cites background from "KNOX action in Arabidopsis is media..."

  • ...Similarly, CK indirectly promotes DELLA stabilization through the induction of GA2 oxidase, thereby inactivating GA (80)....

    [...]

Journal ArticleDOI
08 Feb 2007-Nature
TL;DR: The fine-tuning of concentrations and the spatial distribution of bioactive cytokinins by a cytokinin-activating enzyme as a mechanism that regulates meristem activity is proposed.
Abstract: The growth of plants depends on continuous function of the meristems. Shoot meristems are responsible for all the post-embryonic aerial organs, such as leaves, stems and flowers. It has been assumed that the phytohormone cytokinin has a positive role in shoot meristem function. A severe reduction in the size of meristems in a mutant that is defective in all of its cytokinin receptors has provided compelling evidence that cytokinin is required for meristem activity. Here, we report a novel regulation of meristem activity, which is executed by the meristem-specific activation of cytokinins. The LONELY GUY (LOG) gene of rice is required to maintain meristem activity and its loss of function causes premature termination of the shoot meristem. LOG encodes a novel cytokinin-activating enzyme that works in the final step of bioactive cytokinin synthesis. Revising the long-held idea of multistep reactions, LOG directly converts inactive cytokinin nucleotides to the free-base forms, which are biologically active, by its cytokinin-specific phosphoribohydrolase activity. LOG messenger RNA is specifically localized in shoot meristem tips, indicating the activation of cytokinins in a specific developmental domain. We propose the fine-tuning of concentrations and the spatial distribution of bioactive cytokinins by a cytokinin-activating enzyme as a mechanism that regulates meristem activity.

802 citations

Journal ArticleDOI
TL;DR: The present review discusses the current state of knowledge on GA metabolism with particular emphasis on regulation, including the complex mechanisms for the maintenance of GA homoeostasis.
Abstract: The GAs (gibberellins) comprise a large group of diterpenoid carboxylic acids that are ubiquitous in higher plants, in which certain members function as endogenous growth regulators, promoting organ expansion and developmental changes. These compounds are also produced by some species of lower plants, fungi and bacteria, although, in contrast to higher plants, the function of GAs in these organisms has only recently been investigated and is still unclear. In higher plants, GAs are synthesized by the action of terpene cyclases, cytochrome P450 mono-oxygenases and 2-oxoglutarate-dependent dioxygenases localized, respectively, in plastids, the endomembrane system and the cytosol. The concentration of biologically active GAs at their sites of action is tightly regulated and is moderated by numerous developmental and environmental cues. Recent research has focused on regulatory mechanisms, acting primarily on expression of the genes that encode the dioxygenases involved in biosynthesis and deactivation. The present review discusses the current state of knowledge on GA metabolism with particular emphasis on regulation, including the complex mechanisms for the maintenance of GA homoeostasis.

638 citations

Journal ArticleDOI
TL;DR: This review integrates knowledge from the model plant Arabidopsis and other plant species and focuses on key aspects of recent research on regulatory networks controlling ethylene synthesis and its role in flower development and fruit ripening.
Abstract: Ethylene regulates many aspects of the plant life cycle, including seed germination, root initiation, flower development, fruit ripening, senescence, and responses to biotic and abiotic stresses. It thus plays a key role in responses to the environment that have a direct bearing on a plant's fitness for adaptation and reproduction. In recent years, there have been major advances in our understanding of the molecular mechanisms regulating ethylene synthesis and action. Screening for mutants of the triple response phenotype of etiolated Arabidopsis seedlings, together with map-based cloning and candidate gene characterization of natural mutants from other plant species, has led to the identification of many new genes for ethylene biosynthesis, signal transduction, and response pathways. The simple chemical nature of ethylene contrasts with its regulatory complexity. This is illustrated by the multiplicity of genes encoding the key ethylene biosynthesis enzymes 1-aminocyclopropane-1-carboxylic acid (ACC) synthase and ACC oxidase, multiple ethylene receptors and signal transduction components, and the complexity of regulatory steps involving signalling relays and control of mRNA and protein synthesis and turnover. In addition, there are extensive interactions with other hormones. This review integrates knowledge from the model plant Arabidopsis and other plant species and focuses on key aspects of recent research on regulatory networks controlling ethylene synthesis and its role in flower development and fruit ripening.

606 citations


Cites background from "KNOX action in Arabidopsis is media..."

  • ...The KNOX protein and related proteins are known to be involved in transcriptional control of the synthesis of gibberellins and cytokinins (Sakamoto et al., 2001; Jasinski et al., 2002), and these factors regulate shoot apical meristem maintenance and organ initiation (reviewed by Baurle and Laux, 2003)....

    [...]

  • ...…protein and related proteins are known to be involved in transcriptional control of the synthesis of gibberellins and cytokinins (Sakamoto et al., 2001; Jasinski et al., 2002), and these factors regulate shoot apical meristem maintenance and organ initiation (reviewed by Baurle and Laux, 2003)....

    [...]

References
More filters
Journal ArticleDOI
04 Jan 1996-Nature
TL;DR: To the knowledge, STM is the first gene shown to mark a specific pattern element in the developing plant embryo both phenotypically and molecularly.
Abstract: The KNOTTED class of plant genes encodes homeodomain proteins. These genes have been found in all plant species where they have been sought and, where examined, show expression patterns that suggest they play an important role in shoot meristem function. Until now, all mutant phenotypes associated with these genes have been due to gain-of-function mutations, making it difficult to deduce their wild-type function. Here we present evidence that the Arabidopsis SHOOT-MERISTEMLESS (STM) gene, required for shoot apical meristem formation during embryogenesis, encodes a class I KNOTTED-like protein. We also describe the expression pattern of this gene in the wild-type plant. To our knowledge, STM is the first gene shown to mark a specific pattern element in the developing plant embryo both phenotypically and molecularly.

1,453 citations

Journal ArticleDOI
TL;DR: The results are consistent with the hypothesis that cytokinins have central, but opposite, regulatory functions in root and shoot meristems and indicate that a fine-tuned control of catabolism plays an important role in ensuring the proper regulation of cytokinin functions.
Abstract: Cytokinins are hormones that regulate cell division and development. As a result of a lack of specific mutants and biochemical tools, it has not been possible to study the consequences of cytokinin deficiency. Cytokinin-deficient plants are expected to yield information about processes in which cytokinins are limiting and that, therefore, they might regulate. We have engineered transgenic Arabidopsis plants that overexpress individually six different members of the cytokinin oxidase/dehydrogenase (AtCKX) gene family and have undertaken a detailed phenotypic analysis. Transgenic plants had increased cytokinin breakdown (30 to 45% of wild-type cytokinin content) and reduced expression of the cytokinin reporter gene ARR5:GUS (beta-glucuronidase). Cytokinin deficiency resulted in diminished activity of the vegetative and floral shoot apical meristems and leaf primordia, indicating an absolute requirement for the hormone. By contrast, cytokinins are negative regulators of root growth and lateral root formation. We show that the increased growth of the primary root is linked to an enhanced meristematic cell number, suggesting that cytokinins control the exit of cells from the root meristem. Different AtCKX-green fluorescent protein fusion proteins were localized to the vacuoles or the endoplasmic reticulum and possibly to the extracellular space, indicating that subcellular compartmentation plays an important role in cytokinin biology. Analyses of promoter:GUS fusion genes showed differential expression of AtCKX genes during plant development, the activity being confined predominantly to zones of active growth. Our results are consistent with the hypothesis that cytokinins have central, but opposite, regulatory functions in root and shoot meristems and indicate that a fine-tuned control of catabolism plays an important role in ensuring the proper regulation of cytokinin functions.

1,365 citations

Journal ArticleDOI
TL;DR: It is suggested that cytokinins are an important regulatory factor of plant meristem activity and morphogenesis, with opposing roles in shoots and roots.
Abstract: Cytokinins are a class of plant-specific hormones that play a central role during the cell cycle and influence numerous developmental programs. Because of the lack of biosynthetic and signaling mutants, the regulatory roles of cytokinins are not well understood. We genetically engineered cytokinin oxidase expression in transgenic tobacco plants to reduce their endogenous cytokinin content. Cytokinin-deficient plants developed stunted shoots with smaller apical meristems. The plastochrone was prolonged, and leaf cell production was only 3–4% that of wild type, indicating an absolute requirement of cytokinins for leaf growth. In contrast, root meristems of transgenic plants were enlarged and gave rise to faster growing and more branched roots. These results suggest that cytokinins are an important regulatory factor of plant meristem activity and morphogenesis, with opposing roles in shoots and roots.

1,015 citations

Journal ArticleDOI
22 Feb 2001-Nature
TL;DR: Evidence is provided that cytokinins can activate CRE1 to initiate phosphorelay signalling, and this work identifies Arabidopsis cre1 (cytokinin response 1) mutants, which exhibited reduced responses to cytokinin responses.
Abstract: Cytokinins are a class of plant hormones that are central to the regulation of cell division and differentiation in plants. It has been proposed that they are detected by a two-component system, because overexpression of the histidine kinase gene CKI1 induces typical cytokinin responses and genes for a set of response regulators of two-component systems can be induced by cytokinins. Two-component systems use a histidine kinase as an environmental sensor and rely on a phosphorelay for signal transduction. They are common in microorganisms, and are also emerging as important signal detection routes in plants. Here we report the identification of a cytokinin receptor. We identified Arabidopsis cre1 (cytokinin response 1) mutants, which exhibited reduced responses to cytokinins. The mutated gene CRE1 encodes a histidine kinase. CRE1 expression conferred a cytokinin-dependent growth phenotype on a yeast mutant that lacked the endogenous histidine kinase SLN1 (ref. 10), providing direct evidence that CRE1 is a cytokinin receptor. We also provide evidence that cytokinins can activate CRE1 to initiate phosphorelay signalling.

885 citations

Journal ArticleDOI
05 Mar 1999-Science
TL;DR: Results suggest that cytokinin activates Arabidopsis cell division through induction of CycD3 at the G1-S cell cycle phase transition.
Abstract: Cytokinins are plant hormones that regulate plant cell division. The D-type cyclin CycD3 was found to be elevated in a mutant of Arabidopsis with a high level of cytokinin and to be rapidly induced by cytokinin application in both cell cultures and whole plants. Constitutive expression of CycD3 in transgenic plants allowed induction and maintenance of cell division in the absence of exogenous cytokinin. Results suggest that cytokinin activates Arabidopsis cell division through induction of CycD3 at the G1-S cell cycle phase transition.

786 citations