KTN-based high-speed axial and lateral scanning technique for an optical coherence tomography system and application to dental imaging.
TL;DR: A high-speed 840 nm based polarization-sensitive time domain optical coherence tomography (PSOCT) technique is proposed and demonstrated based on the quadratic electro-optic property of potassium tantalate niobate (KTN) crystals, which provides an automated high- speed two-dimensional scanning of samples of interest.
Abstract: A high-speed 840 nm based polarization-sensitive time domain optical coherence tomography (PSOCT) technique is proposed and demonstrated based on the quadratic electro-optic property of potassium tantalate niobate (KTN) crystals. A longitudinal (axial) scanning depth of ≈10 μm is obtained for an applied AC voltage of 600 V, at 1000 Hz and temperature maintained around 40°C. The OCT system with the KTN-based electro-optic delay line combined with a linear actuation is extended to image an early dental demineralization. For enhanced contrast by the elimination of the strong surface reflection from the sample and high-speed imaging, the quadratic electro-optically tunable PSOCT technique is proposed and demonstrated. Further, a lateral scanning range of 490 μm is also demonstrated by controlling the KTN temperature at 35°C for an applied voltage of 600 V on the tooth sample. This KTN-based quadratic electro-optic delay line combined with lateral scan approach provides an automated high-speed two-dimensional scanning of samples of interest.
...read more
Citations
1 citations
References
983 citations
503 citations
449 citations
333 citations
231 citations
Related Papers (5)
[...]