scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Land-Use Classification Using Taxi GPS Traces

Gang Pan1, Guande Qi1, Zhaohui Wu1, Daqing Zhang, Shijian Li1 
01 Mar 2013-IEEE Transactions on Intelligent Transportation Systems (IEEE)-Vol. 14, Iss: 1, pp 113-123
TL;DR: It is found that pick-up/set-down dynamics, extracted from taxi traces, exhibited clear patterns corresponding to the land-use classes of these regions, particularly for recognizing the social function of urban land by using one year's trace data from 4000 taxis.
Abstract: Detailed land use, which is difficult to obtain, is an integral part of urban planning. Currently, GPS traces of vehicles are becoming readily available. It conveys human mobility and activity information, which can be closely related to the land use of a region. This paper discusses the potential use of taxi traces for urban land-use classification, particularly for recognizing the social function of urban land by using one year's trace data from 4000 taxis. First, we found that pick-up/set-down dynamics, extracted from taxi traces, exhibited clear patterns corresponding to the land-use classes of these regions. Second, with six features designed to characterize the pick-up/set-down pattern, land-use classes of regions could be recognized. Classification results using the best combination of features achieved a recognition accuracy of 95%. Third, the classification results also highlighted regions that changed land-use class from one to another, and such land-use class transition dynamics of regions revealed unusual real-world social events. Moreover, the pick-up/set-down dynamics could further reflect to what extent each region is used as a certain class.
Citations
More filters
Journal ArticleDOI
TL;DR: The unique features and novel application areas of MCSC are characterized and a reference framework for building human-in-the-loop MCSC systems is proposed, which clarifies the complementary nature of human and machine intelligence and envision the potential of deep-fused human--machine systems.
Abstract: With the surging of smartphone sensing, wireless networking, and mobile social networking techniques, Mobile Crowd Sensing and Computing (MCSC) has become a promising paradigm for cross-space and large-scale sensing. MCSC extends the vision of participatory sensing by leveraging both participatory sensory data from mobile devices (offline) and user-contributed data from mobile social networking services (online). Further, it explores the complementary roles and presents the fusion/collaboration of machine and human intelligence in the crowd sensing and computing processes. This article characterizes the unique features and novel application areas of MCSC and proposes a reference framework for building human-in-the-loop MCSC systems. We further clarify the complementary nature of human and machine intelligence and envision the potential of deep-fused human--machine systems. We conclude by discussing the limitations, open issues, and research opportunities of MCSC.

650 citations

Journal ArticleDOI
TL;DR: A new model is proposed that allows users to visually query taxi trips and is able to express a wide range of spatio-temporal queries, and it is flexible in that not only can queries be composed but also different aggregations and visual representations can be applied, allowing users to explore and compare results.
Abstract: As increasing volumes of urban data are captured and become available, new opportunities arise for data-driven analysis that can lead to improvements in the lives of citizens through evidence-based decision making and policies. In this paper, we focus on a particularly important urban data set: taxi trips. Taxis are valuable sensors and information associated with taxi trips can provide unprecedented insight into many different aspects of city life, from economic activity and human behavior to mobility patterns. But analyzing these data presents many challenges. The data are complex, containing geographical and temporal components in addition to multiple variables associated with each trip. Consequently, it is hard to specify exploratory queries and to perform comparative analyses (e.g., compare different regions over time). This problem is compounded due to the size of the data-there are on average 500,000 taxi trips each day in NYC. We propose a new model that allows users to visually query taxi trips. Besides standard analytics queries, the model supports origin-destination queries that enable the study of mobility across the city. We show that this model is able to express a wide range of spatio-temporal queries, and it is also flexible in that not only can queries be composed but also different aggregations and visual representations can be applied, allowing users to explore and compare results. We have built a scalable system that implements this model which supports interactive response times; makes use of an adaptive level-of-detail rendering strategy to generate clutter-free visualization for large results; and shows hidden details to the users in a summary through the use of overlay heat maps. We present a series of case studies motivated by traffic engineers and economists that show how our model and system enable domain experts to perform tasks that were previously unattainable for them.

475 citations


Cites methods from "Land-Use Classification Using Taxi ..."

  • ...[26] used pickup and dropoff information to classify location according to land use....

    [...]

Journal ArticleDOI
TL;DR: The proposed OCNN framework is the first object-based convolutional neural network framework to effectively and efficiently address the complicated problem of urban land use classification from VFSR images, and was tested on aerial photography of two large urban scenes in Southampton and Manchester.

313 citations

Journal ArticleDOI
TL;DR: The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is used and observed OD matrix of center area in Harbin city is used to model the traffic distribution patterns based on entropy-maximizing method, and the estimation performance verify its effectiveness in case study.
Abstract: Taxi GPS trajectories data contain massive spatial and temporal information of urban human activity and mobility. Taking taxi as mobile sensors, the information derived from taxi trips benefits the city and transportation planning. The original data used in study are collected from more than 1100 taxi drivers in Harbin city. We firstly divide the city area into 400 different transportation districts and analyze the origin and destination distribution in urban area on weekday and weekend. The Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm is used to cluster pick-up and drop-off locations. Furthermore, four spatial interaction models are calibrated and compared based on trajectories in shopping center of Harbin city to study the pick-up location searching behavior. By extracting taxi trips from GPS data, travel distance, time and average speed in occupied and non-occupied status are then used to investigate human mobility. Finally, we use observed OD matrix of center area in Harbin city to model the traffic distribution patterns based on entropy-maximizing method, and the estimation performance verify its effectiveness in case study.

234 citations

Journal ArticleDOI
TL;DR: This article presents six research issues in trace analysis and mining, and surveys the state-of-the-art methods, and five promising application domains in smart cities are discussed.
Abstract: Traces of moving objects in a city, which depict lots of semantics concerning human mobility and city dynamics, are becoming increasingly important In this article, we first give a brief introduction to trace data; then we present six research issues in trace analysis and mining, and survey the state-of-the-art methods; finally, five promising application domains in smart cities are discussed

203 citations


Cites methods from "Land-Use Classification Using Taxi ..."

  • ...We roughly divide the mining techniques into five classes: clustering, classification, ranking, regression, and physical statistical modeling....

    [...]

References
More filters
Proceedings Article
02 Aug 1996
TL;DR: In this paper, a density-based notion of clusters is proposed to discover clusters of arbitrary shape, which can be used for class identification in large spatial databases and is shown to be more efficient than the well-known algorithm CLAR-ANS.
Abstract: Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery of clusters with arbitrary shape and good efficiency on large databases. The well-known clustering algorithms offer no solution to the combination of these requirements. In this paper, we present the new clustering algorithm DBSCAN relying on a density-based notion of clusters which is designed to discover clusters of arbitrary shape. DBSCAN requires only one input parameter and supports the user in determining an appropriate value for it. We performed an experimental evaluation of the effectiveness and efficiency of DBSCAN using synthetic data and real data of the SEQUOIA 2000 benchmark. The results of our experiments demonstrate that (1) DBSCAN is significantly more effective in discovering clusters of arbitrary shape than the well-known algorithm CLAR-ANS, and that (2) DBSCAN outperforms CLARANS by a factor of more than 100 in terms of efficiency.

17,056 citations

Proceedings Article
01 Jan 1996
TL;DR: DBSCAN, a new clustering algorithm relying on a density-based notion of clusters which is designed to discover clusters of arbitrary shape, is presented which requires only one input parameter and supports the user in determining an appropriate value for it.
Abstract: Clustering algorithms are attractive for the task of class identification in spatial databases. However, the application to large spatial databases rises the following requirements for clustering algorithms: minimal requirements of domain knowledge to determine the input parameters, discovery of clusters with arbitrary shape and good efficiency on large databases. The well-known clustering algorithms offer no solution to the combination of these requirements. In this paper, we present the new clustering algorithm DBSCAN relying on a density-based notion of clusters which is designed to discover clusters of arbitrary shape. DBSCAN requires only one input parameter and supports the user in determining an appropriate value for it. We performed an experimental evaluation of the effectiveness and efficiency of DBSCAN using synthetic data and real data of the SEQUOIA 2000 benchmark. The results of our experiments demonstrate that (1) DBSCAN is significantly more effective in discovering clusters of arbitrary shape than the well-known algorithm CLARANS, and that (2) DBSCAN outperforms CLARANS by a factor of more than 100 in terms of efficiency.

14,297 citations


Additional excerpts

  • ...We refine the traditional DBSCAN clustering algorithm [53] to solve this problem....

    [...]

  • ...For facilitating further description, several definitions and terms are listed below, which are much similar to the DBSCAN algorithm [53] Definition 1: The point set to be clustered is S, S = {p : p = (x, y)}, where p represents any pick-up position, x is the longitude, and y is the latitude of p....

    [...]

Journal ArticleDOI
TL;DR: This paper gives an overview of the development of object based methods, which aim to delineate readily usable objects from imagery while at the same time combining image processing and GIS functionalities in order to utilize spectral and contextual information in an integrative way.
Abstract: Remote sensing imagery needs to be converted into tangible information which can be utilised in conjunction with other data sets, often within widely used Geographic Information Systems (GIS). As long as pixel sizes remained typically coarser than, or at the best, similar in size to the objects of interest, emphasis was placed on per-pixel analysis, or even sub-pixel analysis for this conversion, but with increasing spatial resolutions alternative paths have been followed, aimed at deriving objects that are made up of several pixels. This paper gives an overview of the development of object based methods, which aim to delineate readily usable objects from imagery while at the same time combining image processing and GIS functionalities in order to utilize spectral and contextual information in an integrative way. The most common approach used for building objects is image segmentation, which dates back to the 1970s. Around the year 2000 GIS and image processing started to grow together rapidly through object based image analysis (OBIA - or GEOBIA for geospatial object based image analysis). In contrast to typical Landsat resolutions, high resolution images support several scales within their images. Through a comprehensive literature review several thousand abstracts have been screened, and more than 820 OBIA-related articles comprising 145 journal papers, 84 book chapters and nearly 600 conference papers, are analysed in detail. It becomes evident that the first years of the OBIA/GEOBIA developments were characterised by the dominance of ‘grey’ literature, but that the number of peer-reviewed journal articles has increased sharply over the last four to five years. The pixel paradigm is beginning to show cracks and the OBIA methods are making considerable progress towards a spatially explicit information extraction workflow, such as is required for spatial planning as well as for many monitoring programmes.

3,809 citations


"Land-Use Classification Using Taxi ..." refers methods in this paper

  • ...Object-based classification method is based on the analysis of automatically segmented objects from satellite images and is thus viewed to provide a critical bridge between real-world buildings/ regions and their radiometric characteristics in Earth observation data [28]....

    [...]

Journal ArticleDOI
TL;DR: The devised NDBI method was applied to map urban land in the city of Nanjing, eastern China and results at an accuracy of 92.6% indicate that it can be used to fulfil the mapping objective reliably.
Abstract: Remotely sensed imagery is ideally used to monitor and detect land cover changes that occur frequently in urban and peri-urban areas as a consequence of incessant urbanization. It is a lengthy process to convert satellite imagery into land cover map using the existing methods of manual interpretation and parametric image classification digitally. In this paper we propose a new method based on Normalized Difference Built-up Index (NDBI) to automate the process of mapping built-up areas. It takes advantage of the unique spectral response of built-up areas and other land covers. Built-up areas are effectively mapped through arithmetic manipulation of re-coded Normalized Difference Vegetation Index (NDVI) and NDBI images derived from TM imagery. The devised NDBI method was applied to map urban land in the city of Nanjing, eastern China. The mapped results at an accuracy of 92.6% indicate that it can be used to fulfil the mapping objective reliably. Compared with the maximum likelihood classification method, t...

1,690 citations

Journal ArticleDOI
TL;DR: In this paper, the spatial structure of images as a function of spatial resolution is measured for selecting the appropriate scale for remote sensing, and graphs are obtained by imaging the scene at fine resolution and then collapsing the image to successively coarser resolutions while calculating the local variance.

1,277 citations


"Land-Use Classification Using Taxi ..." refers background in this paper

  • ...It was observed that such pixel-based classification got the worse result when the satellite resolution increased [24], because pixel-based methods did not consider spatial context such as local variance in images [25]....

    [...]