scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Langevin-dynamics study of the dynamical properties of small magnetic particles

01 Dec 1998-Physical Review B (American Physical Society)-Vol. 58, Iss: 22, pp 14937-14958
TL;DR: In this paper, the Langevin-dynamics approach was used to study the dynamics of magnetic nanoparticles, and the results were compared with different analytical expressions used to model the relaxation of nanoparticle ensembles, assessing their accuracy.
Abstract: The stochastic Landau-Lifshitz-Gilbert equation of motion for a classical magnetic moment is numerically solved (properly observing the customary interpretation of it as a Stratonovich stochastic differential equation), in order to study the dynamics of magnetic nanoparticles. The corresponding Langevin-dynamics approach allows for the study of the fluctuating trajectories of individual magnetic moments, where we have encountered remarkable phenomena in the overbarrier rotation process, such as crossing-back or multiple crossing of the potential barrier, rooted in the gyromagnetic nature of the system. Concerning averaged quantities, we study the linear dynamic response of the archetypal ensemble of noninteracting classical magnetic moments with axially symmetric magnetic anisotropy. The results are compared with different analytical expressions used to model the relaxation of nanoparticle ensembles, assessing their accuracy. It has been found that, among a number of heuristic expressions for the linear dynamic susceptibility, only the simple formula proposed by Shliomis and Stepanov matches the coarse features of the susceptibility reasonably. By comparing the numerical results with the asymptotic formula of Storonkin {Sov. Phys. Crystallogr. 30, 489 (1985) [Kristallografiya 30, 841 (1985)]}, the effects of the intra-potential-well relaxation modes on the low-temperature longitudinal dynamic response have been assessed, showing their relatively small reflection in the susceptibility curves but their dramatic influence on the phase shifts. Comparison of the numerical results with the exact zero-damping expression for the transverse susceptibility by Garanin, Ishchenko, and Panina {Theor. Math. Phys. (USSR) 82, 169 (1990) [Teor. Mat. Fiz. 82, 242 (1990)]}, reveals a sizable contribution of the spread of the precession frequencies of the magnetic moment in the anisotropy field to the dynamic response at intermediate-to-high temperatures.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The key methods used in atomistic spin models are presented, which are then applied to a range of magnetic problems, and the parallelization strategies used enable the routine simulation of extended systems with full atomistic resolution.
Abstract: Atomistic modelling of magnetic materials provides unprecedented detail about the underlying physical processes that govern their macroscopic properties, and allows the simulation of complex effects such as surface anisotropy, ultrafast laser-induced spin dynamics, exchange bias, and microstructural effects. Here we present the key methods used in atomistic spin models which are then applied to a range of magnetic problems. We detail the parallelization strategies used which enable the routine simulation of extended systems with full atomistic resolution.

623 citations

Journal ArticleDOI
TL;DR: Numerically and experimentally a novel mechanism of deterministic magnetization reversal in a ferrimagnet driven by an ultrafast heating of the medium resulting from the absorption of a sub-picosecond laser pulse without the presence of a magnetic field is shown.
Abstract: The question of how, and how fast, magnetization can be reversed is a topic of great practical interest for the manipulation and storage of magnetic information. It is generally accepted that magnetization reversal should be driven by a stimulus represented by time-non-invariant vectors such as a magnetic field, spin-polarized electric current, or cross-product of two oscillating electric fields. However, until now it has been generally assumed that heating alone, not represented as a vector at all, cannot result in a deterministic reversal of magnetization, although it may assist this process. Here we show numerically and demonstrate experimentally a novel mechanism of deterministic magnetization reversal in a ferrimagnet driven by an ultrafast heating of the medium resulting from the absorption of a sub-picosecond laser pulse without the presence of a magnetic field.

600 citations

Journal ArticleDOI
31 May 2013-Science
TL;DR: This study revealed that skyrmions vanish by a coalescence, forming elongated structures, and numerical simulations showed that changes of topology are controlled by singular magnetic point defects.
Abstract: Skyrmion crystals are regular arrangements of magnetic whirls that exist in a wide range of chiral magnets. Because of their topology, they cannot be created or destroyed by smooth rearrangements of the direction of the local magnetization. Using magnetic force microscopy, we tracked the destruction of the skyrmion lattice on the surface of a bulk crystal of Fe(1-x)Co(x)Si (x = 0.5). Our study revealed that skyrmions vanish by a coalescence, forming elongated structures. Numerical simulations showed that changes of topology are controlled by singular magnetic point defects. They can be viewed as quantized magnetic monopoles and antimonopoles, which provide sources and sinks of one flux quantum of emergent magnetic flux, respectively.

517 citations

Journal ArticleDOI
TL;DR: A constant applied field, well below the switching field, combined with a radio-frequency field pulse can reverse the magnetization of a nanoparticle.
Abstract: Magnetization reversal in magnetic particles is one of the fundamental issues in magnetic data storage. Technological improvements require the understanding of dynamical magnetization reversal processes at nanosecond time scales. New strategies are needed to overcome current limitations. For example, the problem of thermal stability of the magnetization state (superparamagnetic limit) can be pushed down to smaller particle sizes by increasing the magnetic anisotropy. High fields are then needed to reverse the magnetization, which are difficult to achieve in current devices. Here we propose a new method to overcome this limitation. A constant applied field, well below the switching field, combined with a radio-frequency (RF) field pulse can reverse the magnetization of a nanoparticle. The efficiency of this method is demonstrated on a 20-nm-diameter cobalt particle by using the microSQUID (superconducting quantum interference device) technique. Other applications of this method might be nucleation or depinning of domain walls.

416 citations


Cites methods from "Langevin-dynamics study of the dyna..."

  • ...Apart from technological applications, our technique is of particular importance in view of theoretical prediction...

    [...]

Journal ArticleDOI
TL;DR: In this article, a generalized stochastic Landau-Lifshitz equation and its corresponding Fokker-Planck equation were proposed for the magnetization dynamics in the presence of spin-transfer torques.
Abstract: We propose a generalized stochastic Landau-Lifshitz equation and its corresponding Fokker-Planck equation for the magnetization dynamics in the presence of spin-transfer torques. Since the spin-transfer torque can pump a magnetic energy into the magnetic system, the equilibrium temperature of the magnetic system is ill defined. We introduce an effective temperature based on a stationary solution of the Fokker-Planck equation. In the limit of high-energy barriers, the law of thermal agitation is derived. We find that the N\'eel-Brown relaxation formula remains valid as long as we replace the temperature by an effective one that is linearly dependent on the spin torque. We carry out the numerical integration of the stochastic Landau-Lifshitz equation to support our theory. Our results agree with existing experimental data.

378 citations

References
More filters
Book
01 Jan 1981
TL;DR: In this article, the authors introduce the Fokker-planck equation, the Langevin approach, and the diffusion type of the master equation, as well as the statistics of jump events.
Abstract: Preface to the first edition. Preface to the second edition. Abbreviated references. I. Stochastic variables. II. Random events. III. Stochastic processes. IV. Markov processes. V. The master equation. VI. One-step processes. VII. Chemical reactions. VIII. The Fokker-Planck equation. IX. The Langevin approach. X. The expansion of the master equation. XI. The diffusion type. XII. First-passage problems. XIII. Unstable systems. XIV. Fluctuations in continuous systems. XV. The statistics of jump events. XVI. Stochastic differential equations. XVII. Stochastic behavior of quantum systems.

7,858 citations

01 Jan 1992
Abstract: Preface to the first edition. Preface to the second edition. Abbreviated references. I. Stochastic variables. II. Random events. III. Stochastic processes. IV. Markov processes. V. The master equation. VI. One-step processes. VII. Chemical reactions. VIII. The Fokker-Planck equation. IX. The Langevin approach. X. The expansion of the master equation. XI. The diffusion type. XII. First-passage problems. XIII. Unstable systems. XIV. Fluctuations in continuous systems. XV. The statistics of jump events. XVI. Stochastic differential equations. XVII. Stochastic behavior of quantum systems.

6,887 citations

Book
01 Jun 1992
TL;DR: In this article, a time-discrete approximation of deterministic Differential Equations is proposed for the stochastic calculus, based on Strong Taylor Expansions and Strong Taylor Approximations.
Abstract: 1 Probability and Statistics- 2 Probability and Stochastic Processes- 3 Ito Stochastic Calculus- 4 Stochastic Differential Equations- 5 Stochastic Taylor Expansions- 6 Modelling with Stochastic Differential Equations- 7 Applications of Stochastic Differential Equations- 8 Time Discrete Approximation of Deterministic Differential Equations- 9 Introduction to Stochastic Time Discrete Approximation- 10 Strong Taylor Approximations- 11 Explicit Strong Approximations- 12 Implicit Strong Approximations- 13 Selected Applications of Strong Approximations- 14 Weak Taylor Approximations- 15 Explicit and Implicit Weak Approximations- 16 Variance Reduction Methods- 17 Selected Applications of Weak Approximations- Solutions of Exercises- Bibliographical Notes

6,284 citations

Book
01 Jan 1984

5,597 citations