scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Large amplitude free flexural vibrations of functionally graded graphene platelets reinforced porous composite curved beams using finite element based on trigonometric shear deformation theory

TL;DR: In this article, the large amplitude free flexural vibration characteristics of fairly thick and thin functionally graded graphene platelets reinforced porous curved composite beams are investigated using finite element approach, which includes the influence of shear deformation which is represented through trigonometric function and it accounts for in-plane and rotary inertia effects.
Abstract: In this paper, the large amplitude free flexural vibration characteristics of fairly thick and thin functionally graded graphene platelets reinforced porous curved composite beams are investigated using finite element approach. The formulation includes the influence of shear deformation which is represented through trigonometric function and it accounts for in-plane and rotary inertia effects. The geometric non-linearity introducing von Karman’s assumptions is considered. The non-linear governing equations obtained based on Lagrange’s equations of motion are solved employing the direct iteration technique. The variation of non-linear frequency with amplitudes is brought out considering different parameters such as slenderness ratio of the beam, curved beam included angle, distribution pattern of porosity and graphene platelets, graphene platelet geometry and boundary conditions. The present study reveals the redistribution of vibrating mode shape at certain amplitude of vibration depending on geometric and material parameters of the curved composite beam. Also, the degree of hardening behaviour increases with the weight fraction and aspect ratio of graphene platelet. The rate of change of nonlinear behaviour depends on the level of amplitude of vibration, shallowness and slenderness ratio of the curved beam.
Citations
More filters
Journal ArticleDOI
TL;DR: The most recently developed functionally graded graphene platelets reinforced composite (FG-GPLRC) where GPLs are non-uniformly dispersed with more GPLs in the area where they are most needed to achieve significantly improved mechanical performance has opened up a new avenue for the development of next generation structural forms with an excellent combination of high stiffness, light weight and multi-functionality.

272 citations

Journal ArticleDOI
TL;DR: In this paper, bending, buckling, and free vibration analyses of micro-scaled functionally graded Graphene nanoplatelets reinforced porous nanocomposite annular plate located on the bi-parameter elastic foundation exposed to hygrothermo-mechanical loads are carried out.

76 citations

Journal ArticleDOI
TL;DR: In this paper, a hybrid multiscale method is developed, combining a hierarchical multispectral approach with a concurrent approach, which allows to perform accurate parametric nonlinear analyses at a low computational cost.

68 citations

Journal ArticleDOI
TL;DR: In this paper, a thermal buckling analysis of annular/circular microplates, which are made from functionally graded Graphene nanoplatelets (GNP) reinforced porous nanocomposite is presented.

65 citations

Journal ArticleDOI
TL;DR: In this article, the nonlinear free vibration of nanocomposite circular plates reinforced with graphene platelets (GPLs) is investigated over a three-parameter non-linear elastic foundation.

52 citations

References
More filters
Journal ArticleDOI
John Banhart1
TL;DR: The possibilities for manufacturing metal foams or other porous metallic structures are reviewed in this article, where various manufacturing processes are classified according to the state of matter in which the metal is processed, such as solid, liquid, gaseous or ionised.

3,294 citations

Journal ArticleDOI
TL;DR: The Halpin-Tsai equations are based upon the self-consistent micromechanics method developed by Hill as discussed by the authors. But they are not suitable for semi-crystalline polymers.
Abstract: The Halpin-Tsai equations are based upon the “self-consistent micromechanics method” developed by Hill. Hermans employed this model to obtain a solution in terms of Hill's “reduced moduli”. Halpin and Tsai have reduced Hermans' solution to a simpler analytical form and extended its use for a variety of filament geometries. The development of these micromechanic's relationships, which form the operational bases for the coniposite analogy of Halpin and Kardos for semi-crystalline polymers, are reviewed herein.

2,609 citations

Book
01 Jan 2000
TL;DR: In this paper, the authors present a model for making metal foams characterisation methods and properties of metal foam, and a constitutive model for metal foam design for Creep with Metal Foams Sandwich Structures Energy Management: Packaging and Blast Protection Sound Absorption and Vibration Suppression Thermal Management and Heat Transfer Electrical Properties of metal Foams Cutting, Finishing and Joining Cost Estimation and Viability Case Studies Suppliers of Metal Foam Web Sites Index
Abstract: Introduction Making Metal Foams Characterization Methods Properties of Metal Foams Design Analysis for Material Selection Design Formulae for Simple Structures A Constitutive Model for Metal Foams Design for Creep with Metal Foams Sandwich Structures Energy Management: Packaging and Blast Protection Sound Absorption and Vibration Suppression Thermal Management and Heat Transfer Electrical Properties of Metal Foams Cutting, Finishing and Joining Cost Estimation and Viability Case Studies Suppliers of Metal Foams Web Sites Index .

2,527 citations

Journal ArticleDOI
03 Dec 2009-ACS Nano
TL;DR: Graphene platelets significantly out-perform carbon nanotube additives in terms of mechanical properties enhancement, and may be related to their high specific surface area, enhanced nanofiller-matrix adhesion/interlocking arising from their wrinkled (rough) surface, as well as the two-dimensional geometry of graphene platelets.
Abstract: In this study, the mechanical properties of epoxy nanocomposites with graphene platelets, single-walled carbon nanotubes, and multi-walled carbon nanotube additives were compared at a nanofiller weight fraction of 0.1 ± 0.002%. The mechanical properties measured were the Young’s modulus, ultimate tensile strength, fracture toughness, fracture energy, and the material’s resistance to fatigue crack propagation. The results indicate that graphene platelets significantly out-perform carbon nanotube additives. The Young’s modulus of the graphene nanocomposite was ∼31% greater than the pristine epoxy as compared to ∼3% increase for single-walled carbon nanotubes. The tensile strength of the baseline epoxy was enhanced by ∼40% with graphene platelets compared to ∼14% improvement for multi-walled carbon nanotubes. The mode I fracture toughness of the nanocomposite with graphene platelets showed ∼53% increase over the epoxy compared to ∼20% improvement for multi-walled carbon nanotubes. The fatigue resistance resu...

2,367 citations

Journal ArticleDOI
TL;DR: In this paper, the phonon spectra of graphene were calculated as a function of uniaxial tension by density functional perturbation theory to assess the first occurrence of phonon instability on the strain path.
Abstract: Graphene-based $s{p}^{2}$-carbon nanostructures such as carbon nanotubes and nanofibers can fail near their ideal strengths due to their exceedingly small dimensions. We have calculated the phonon spectra of graphene as a function of uniaxial tension by density functional perturbation theory to assess the first occurrence of phonon instability on the strain path, which controls the strength of a defect-free crystal at $0\phantom{\rule{0.3em}{0ex}}\mathrm{K}$. Uniaxial tensile strain is applied in the $x$ (nearest-neighbor) and $y$ (second nearest-neighbor) directions, related to tensile deformation of zigzag and armchair nanotubes, respectively. The Young's modulus $E=1050\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$ and Poisson's ratio $\ensuremath{ u}=0.186$ from our small-strain results are in good agreement with previous calculations. We find that in both $x$ and $y$ uniaxial tensions, phonon instabilities occur near the center of the Brillouin zone, at (${\ensuremath{\epsilon}}_{xx}=0.194$, ${\ensuremath{\sigma}}_{xx}=110\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$, ${\ensuremath{\epsilon}}_{yy}=\ensuremath{-}0.016$) and (${\ensuremath{\epsilon}}_{yy}=0.266$, ${\ensuremath{\sigma}}_{yy}=121\phantom{\rule{0.3em}{0ex}}\mathrm{GPa}$, ${\ensuremath{\epsilon}}_{xx}=\ensuremath{-}0.027$), respectively. Both soft phonons are longitudinal elastic waves in the pulling direction, suggesting that brittle cleavage fracture may be an inherent behavior of graphene and carbon nanotubes at low temperatures. We also predict that a phonon band gap will appear in highly stretched graphene, which could be a useful spectroscopic signature for highly stressed carbon nanotubes.

1,370 citations