scispace - formally typeset
Open AccessJournal ArticleDOI

Large histone H3 lysine 9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells

Reads0
Chats0
TLDR
It is found that differentiated tissues show surprisingly large K9-modified regions (up to 4.9 Mb), which are large organized chromatin K9 modifications (LOCKs) and may provide a cell type–heritable mechanism for phenotypic plasticity in development and disease.
Abstract
Higher eukaryotes must adapt a totipotent genome to specialized cell types with stable but limited functions. One potential mechanism for lineage restriction is changes in chromatin, and differentiation-related chromatin changes have been observed for individual genes. We have taken a genome-wide view of histone H3 lysine 9 dimethylation (H3K9Me2) and find that differentiated tissues show surprisingly large K9-modified regions (up to 4.9 Mb). These regions are highly conserved between human and mouse and are differentiation specific, covering only approximately 4% of the genome in undifferentiated mouse embryonic stem (ES) cells, compared to 31% in differentiated ES cells, approximately 46% in liver and approximately 10% in brain. These modifications require histone methyltransferase G9a and are inversely related to expression of genes within the regions. We term these regions large organized chromatin K9 modifications (LOCKs). LOCKs are substantially lost in cancer cell lines, and they may provide a cell type-heritable mechanism for phenotypic plasticity in development and disease.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Topological domains in mammalian genomes identified by analysis of chromatin interactions

TL;DR: It is found that the boundaries of topological domains are enriched for the insulator binding protein CTCF, housekeeping genes, transfer RNAs and short interspersed element (SINE) retrotransposons, indicating that these factors may have a role in establishing the topological domain structure of the genome.
Journal ArticleDOI

Epigenetics in Cancer

TL;DR: The current understanding of alterations in the epigenetic landscape that occur in cancer compared with normal cells, the roles of these changes in cancer initiation and progression, including the cancer stem cell model, and the potential use of this knowledge in designing more effective treatment strategies are discussed.
Journal ArticleDOI

Charting histone modifications and the functional organization of mammalian genomes

TL;DR: A selection of recent studies that have probed histone modifications and successive layers of chromatin structure in mammalian genomes, the patterns that have been identified and future directions for research are reviewed.
References
More filters
Journal ArticleDOI

DAVID: Database for Annotation, Visualization, and Integrated Discovery

TL;DR: DAMID is a web-accessible program that integrates functional genomic annotations with intuitive graphical summaries that assists in the interpretation of genome-scale datasets by facilitating the transition from data collection to biological meaning.
Journal ArticleDOI

A gene atlas of the mouse and human protein-encoding transcriptomes

TL;DR: In this paper, high-density oligonucleotide arrays offer the opportunity to examine patterns of gene expression on a genome scale, and the authors have designed custom arrays that interrogate the expression of the vast majority of proteinencoding human and mouse genes and have used them to profile a panel of 79 human and 61 mouse tissues.
Journal ArticleDOI

Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions

TL;DR: A high-resolution map of the interaction sites of the entire genome with NL components in human fibroblasts is constructed and demonstrates that the human genome is divided into large, discrete domains that are units of chromosome organization within the nucleus.
Journal ArticleDOI

Phenotypic plasticity and the epigenetics of human disease

TL;DR: This model proposes that hereditary disorders of the epigenetic apparatus lead to developmental defects, that cancer epigenetics involves disruption of the stem-cell programme, and that common diseases with late-onset phenotypes involve interactions between the epigenome, the genome and the environment.
Related Papers (5)