scispace - formally typeset
Search or ask a question

Large margin rank boundaries for ordinal regression

01 Jan 2000-pp 115-132
About: The article was published on 2000-01-01 and is currently open access. It has received 1049 citations till now. The article focuses on the topics: Ordinal regression & Rank (graph theory).
Citations
More filters
Proceedings ArticleDOI
23 Jul 2002
TL;DR: The goal of this paper is to develop a method that utilizes clickthrough data for training, namely the query-log of the search engine in connection with the log of links the users clicked on in the presented ranking.
Abstract: This paper presents an approach to automatically optimizing the retrieval quality of search engines using clickthrough data. Intuitively, a good information retrieval system should present relevant documents high in the ranking, with less relevant documents following below. While previous approaches to learning retrieval functions from examples exist, they typically require training data generated from relevance judgments by experts. This makes them difficult and expensive to apply. The goal of this paper is to develop a method that utilizes clickthrough data for training, namely the query-log of the search engine in connection with the log of links the users clicked on in the presented ranking. Such clickthrough data is available in abundance and can be recorded at very low cost. Taking a Support Vector Machine (SVM) approach, this paper presents a method for learning retrieval functions. From a theoretical perspective, this method is shown to be well-founded in a risk minimization framework. Furthermore, it is shown to be feasible even for large sets of queries and features. The theoretical results are verified in a controlled experiment. It shows that the method can effectively adapt the retrieval function of a meta-search engine to a particular group of users, outperforming Google in terms of retrieval quality after only a couple of hundred training examples.

4,453 citations

Proceedings ArticleDOI
07 Aug 2005
TL;DR: RankNet is introduced, an implementation of these ideas using a neural network to model the underlying ranking function, and test results on toy data and on data from a commercial internet search engine are presented.
Abstract: We investigate using gradient descent methods for learning ranking functions; we propose a simple probabilistic cost function, and we introduce RankNet, an implementation of these ideas using a neural network to model the underlying ranking function. We present test results on toy data and on data from a commercial internet search engine.

2,813 citations


Cites background or methods from "Large margin rank boundaries for or..."

  • ...Our approach follows (Herbrich et al., 2000) in that we train on pairs of examples to learn a ranking function...

    [...]

  • ...Although the linear version is an online algorithm2, PRank has been compared to batch ranking algorithms, and a quadratic kernel version was found to outperform all such algorithms described in (Herbrich et al., 2000)....

    [...]

  • ...Although the linear version is an online algorithm(2), PRank has been compared to batch ranking algorithms, and a quadratic kernel version was found to outperform all such algorithms described in (Herbrich et al., 2000)....

    [...]

  • ...(Herbrich et al., 2000) cast the problem of learning to rank as ordinal regression, that is, learning the mapping of an input vector to a member of an ordered set of numerical ranks....

    [...]

  • ...However (Herbrich et al., 2000) cast the ranking problem as an ordinal regression problem; rank boundaries play a critical role during training, as they do for several other algorithms (Crammer & Singer, 2002; Harrington, 2003)....

    [...]

Proceedings ArticleDOI
25 Jun 2005
TL;DR: A meta-algorithm is applied, based on a metric labeling formulation of the rating-inference problem, that alters a given n-ary classifier's output in an explicit attempt to ensure that similar items receive similar labels.
Abstract: We address the rating-inference problem, wherein rather than simply decide whether a review is "thumbs up" or "thumbs down", as in previous sentiment analysis work, one must determine an author's evaluation with respect to a multi-point scale (e.g., one to five "stars"). This task represents an interesting twist on standard multi-class text categorization because there are several different degrees of similarity between class labels; for example, "three stars" is intuitively closer to "four stars" than to "one star".We first evaluate human performance at the task. Then, we apply a meta-algorithm, based on a metric labeling formulation of the problem, that alters a given n-ary classifier's output in an explicit attempt to ensure that similar items receive similar labels. We show that the meta-algorithm can provide significant improvements over both multi-class and regression versions of SVMs when we employ a novel similarity measure appropriate to the problem.

2,544 citations

Book
Tie-Yan Liu1
27 Jun 2009
TL;DR: Three major approaches to learning to rank are introduced, i.e., the pointwise, pairwise, and listwise approaches, the relationship between the loss functions used in these approaches and the widely-used IR evaluation measures are analyzed, and the performance of these approaches on the LETOR benchmark datasets is evaluated.
Abstract: This tutorial is concerned with a comprehensive introduction to the research area of learning to rank for information retrieval. In the first part of the tutorial, we will introduce three major approaches to learning to rank, i.e., the pointwise, pairwise, and listwise approaches, analyze the relationship between the loss functions used in these approaches and the widely-used IR evaluation measures, evaluate the performance of these approaches on the LETOR benchmark datasets, and demonstrate how to use these approaches to solve real ranking applications. In the second part of the tutorial, we will discuss some advanced topics regarding learning to rank, such as relational ranking, diverse ranking, semi-supervised ranking, transfer ranking, query-dependent ranking, and training data preprocessing. In the third part, we will briefly mention the recent advances on statistical learning theory for ranking, which explain the generalization ability and statistical consistency of different ranking methods. In the last part, we will conclude the tutorial and show several future research directions.

2,515 citations

Journal Article
TL;DR: This paper proposes to appropriately generalize the well-known notion of a separation margin and derive a corresponding maximum-margin formulation and presents a cutting plane algorithm that solves the optimization problem in polynomial time for a large class of problems.
Abstract: Learning general functional dependencies between arbitrary input and output spaces is one of the key challenges in computational intelligence. While recent progress in machine learning has mainly focused on designing flexible and powerful input representations, this paper addresses the complementary issue of designing classification algorithms that can deal with more complex outputs, such as trees, sequences, or sets. More generally, we consider problems involving multiple dependent output variables, structured output spaces, and classification problems with class attributes. In order to accomplish this, we propose to appropriately generalize the well-known notion of a separation margin and derive a corresponding maximum-margin formulation. While this leads to a quadratic program with a potentially prohibitive, i.e. exponential, number of constraints, we present a cutting plane algorithm that solves the optimization problem in polynomial time for a large class of problems. The proposed method has important applications in areas such as computational biology, natural language processing, information retrieval/extraction, and optical character recognition. Experiments from various domains involving different types of output spaces emphasize the breadth and generality of our approach.

2,292 citations