scispace - formally typeset

Journal ArticleDOI

Large-scale nanopatterning of single proteins used as carriers of magnetic nanoparticles

02 Feb 2010-Advanced Materials (Wiley)-Vol. 22, Iss: 5, pp 588-591

TL;DR: A variety of methods based on Coulomb-force-directed assembly of nanoparticles have been proposed, but the supramolecular organization attained from the ‘‘bottom-up’’ approaches either does not allow accurate placement of the desired structures on a specific region of an inhomogeneous surface.
Abstract: However, the supramolecular organization attained from‘‘bottom-up’’approachesiseitherdifficulttoextendfromnano-tomesoscopic length scales or does not allow accurate placement ofthe desired structures on a specific region of an inhomogeneoussurface. Similarly, a variety of methods based on Coulomb-force-directed assembly of nanoparticles have been proposed.

Content maybe subject to copyright    Report

NanoSpain2010 23-26 March, 2010 Malaga-Spain
Large-scale nanopatterning of single proteins used as carriers of magnetic nanoparticles
Ramsés V. Martínez, Javier Martínez, Marco Chiesa, Ricardo García
Instituto de Microelectrónica de Madrid, CSIC, Isaac Newton 8, 28760 Tres Cantos, Madrid
(Spain)
mchiesa@imm.cnm.csic.es
Accurate and reproducible patterning of proteins and functional nanoparticles is essential to
exploit their properties in nano and microscale devices [1]. Electrostatic interactions, capillary
forces, surface functionalization and nanolithography can be used in combination or
independently to achieve the desired protein organization [2]. Here, we report a simple yet
efficient method to deposit ferritin proteins with nanoscale accuracy over large areas. The
selective deposition is driven by the electrostatic interactions existing between the proteins
and nanoscale features. The efficiency of the deposition process can be controlled by
changing the pH of the solution. By combining a top-down tip-based nanolithography [3] and
bottom-up electrostatic interactions we have formed regular arrays of ferritin molecules with
an accuracy that matches the protein size (~10 nm). Magnetic force measurements confirm
the magnetic activity of the deposited nanoparticles.
References:
[1] W. Cheng, T. Walter, D. Luo et al., Nature Nanotechnology 3 (2008) 682.
[2] R.V. Martinez, R. Garcia, E. Coronado et al., Adv. Mater. 19 (2007) 291.
[3] R.V. Martínez, J. Martínez, M. Chiesa et al., Adv. Mater. DOI: 10.1002/adma.200902568
Figures:
Fig. 1: Patterning of ferritin molecules by local oxidation nanolithography and silicon functionalization by
APTES at low pH values.
Local Oxidation
pH 3
APTES
Ferritin deposition
Si
250 nm
25 nm
Oral

NanoSpain2010 23-26 March, 2010 Malaga-Spain
Fig. 2: Patterning of ferritin molecules over cm
2
areas by controlled dewetting and surface functionalization at
neutral pH values.
PDMS stamp
Liquid film
Pattern
replication
APTES
pH 6.5
5 µm
10
nm
500 nm
Oral
Citations
More filters

Journal ArticleDOI
Ricardo Garcia1, Armin W. Knoll2, Elisa Riedo3Institutions (3)
TL;DR: The fundamentals of scanning probe lithography and its use in materials science and nanotechnology are reviewed, focusing on robust methods, such as those based on thermal effects, chemical reactions and voltage-induced processes, that demonstrate a potential for applications.
Abstract: The nanoscale control afforded by scanning probe microscopes has prompted the development of a wide variety of scanning-probe-based patterning methods. Some of these methods have demonstrated a high degree of robustness and patterning capabilities that are unmatched by other lithographic techniques. However, the limited throughput of scanning probe lithography has prevented its exploitation in technological applications. Here, we review the fundamentals of scanning probe lithography and its use in materials science and nanotechnology. We focus on robust methods, such as those based on thermal effects, chemical reactions and voltage-induced processes, that demonstrate a potential for applications.

426 citations


Journal ArticleDOI
TL;DR: This paper presents a meta-analyses of the chiral stationary phase of the response of the immune system to various types of materials and shows clear patterns of decline in the immune systems of mice treated with these materials.
Abstract: Günther Jutz,†,§ Patrick van Rijn,†,‡,§ Barbara Santos Miranda,‡ and Alexander Böker*,† †DWI Leibniz-Institut für Interaktive Materialien e.V., Lehrstuhl für Makromolekulare Materialien und Oberflac̈hen, RWTH Aachen University, Forckenbeckstrasse 50, D-52056 Aachen, Germany ‡Department of Biomedical Engineering-FB40, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands

255 citations


Journal ArticleDOI
TL;DR: The discovery of bistable magnetic nanoparticles of 6 nm with a wide thermal hysteresis above room temperature showcases the actual possibilities of spin crossover materials for nanotechnological applications.
Abstract: Nanoparticles of iron(II) triazole salts have been prepared from water−organic microemulsions. The mean size of the nanoparticles can be tuned down to 6 nm in diameter, with a narrow size distribution. A sharp spin transition from the low spin (LS) to the high spin (HS) state is observed above room temperature, with a 30−40-K-wide thermal hysteresis. The same preparation can yield second generation nanoparticles containing molecular alloys by mixing triazole with triazole derivatives, or from metallic mixtures of iron(II) and zinc(II). In these nanoparticles of 10−15 nm, the spin transition “moves” towards lower temperatures, reaching a 316 K limit for the cooling down transition and maintaining a thermal hysteresis over 15−20-K-wide. The nanoparticles were characterized by dynamic light scattering, TEM, and AFM, after deposition on gold or silicon surfaces. The spin transition was characterized by magnetic susceptibility measurements and EXAFS (in solid samples after solvent removal) and also by the colo...

142 citations


Journal ArticleDOI
TL;DR: The aim is to give a broad overview of the last advances achieved with these techniques and their potential and evolution over the next years, including the use of these techniques to characterize other nanostructured magnetic materials, such as nanoparticles.
Abstract: This critical review represents a concise revision of the different experimental approaches so far followed for the structuration of molecular nanomagnets on surfaces, since the first reports on the field more than ten years ago. Afterwards, a presentation of the different experimental approaches followed for their integration in sensors is described. Such work involves mainly two families of sensors and devices, microSQUIDs sensors and three-terminal devices for single-molecule detection. Finally the last section is devoted to a detailed revision of the different experimental techniques that can be used for the magnetic characterization of these systems on surfaces, ranging from magnetic circular dichroism to magnetic force microscopy. The use of these techniques to characterize other nanostructured magnetic materials, such as nanoparticles, is also revised. The aim is to give a broad overview of the last advances achieved with these techniques and their potential and evolution over the next years.

126 citations


Journal ArticleDOI
TL;DR: Basic and advanced AFM-related approaches are surveyed and their unique advantages and limitations in imaging, sensing, parameterizing and designing biointerfaces using AFM techniques are discussed.
Abstract: Atomic force microscopy (AFM)-based methods have matured into a powerful nanoscopic platform, enabling the characterization of a wide range of biological and synthetic biointerfaces ranging from tissues, cells, membranes, proteins, nucleic acids and functional materials. Although the unprecedented signal-to-noise ratio of AFM enables the imaging of biological interfaces from the cellular to the molecular scale, AFM-based force spectroscopy allows their mechanical, chemical, conductive or electrostatic, and biological properties to be probed. The combination of AFM-based imaging and spectroscopy structurally maps these properties and allows their 3D manipulation with molecular precision. In this Review, we survey basic and advanced AFM-related approaches and evaluate their unique advantages and limitations in imaging, sensing, parameterizing and designing biointerfaces. It is anticipated that in the next decade these AFM-related techniques will have a profound influence on the way researchers view, characterize and construct biointerfaces, thereby helping to solve and address fundamental challenges that cannot be addressed with other techniques. Atomic force microscopy (AFM)-based approaches enable the characterization and manipulation of biological and synthetic biointerfaces, including tissues, cells, membranes, proteins, nucleic acid and functional materials. In this Review, the advantages and limitations of imaging, sensing, parameterizing and designing biointerfaces using AFM techniques are discussed.

96 citations


References
More filters


Journal ArticleDOI
Pauline M. Harrison1, Paolo Arosio2Institutions (2)
TL;DR: A great deal of research effort is now concentrated on two aspects of ferritin: its functional mechanisms and its regulation and the apparent links between iron and citrate metabolism through a single molecule with dual function are described.
Abstract: The iron storage protein, ferritin, plays a key role in iron metabolism. Its ability to sequester the element gives ferritin the dual functions of iron detoxification and iron reserve. The importance of these functions is emphasised by ferritin's ubiquitous distribution among living species. Ferritin's three-dimensional structure is highly conserved. All ferritins have 24 protein subunits arranged in 432 symmetry to give a hollow shell with an 80 A diameter cavity capable of storing up to 4500 Fe(III) atoms as an inorganic complex. Subunits are folded as 4-helix bundles each having a fifth short helix at roughly 60° to the bundle axis. Structural features of ferritins from humans, horse, bullfrog and bacteria are described: all have essentially the same architecture in spite of large variations in primary structure (amino acid sequence identities can be as low as 14%) and the presence in some bacterial ferritins of haem groups. Ferritin molecules isolated from vertebrates are composed of two types of subunit (H and L), whereas those from plants and bacteria contain only H-type chains, where ‘H-type’ is associated with the presence of centres catalysing the oxidation of two Fe(II) atoms. The similarity between the dinuclear iron centres of ferritin H-chains and those of ribonucleotide reductase and other proteins suggests a possible wider evolutionary linkage. A great deal of research effort is now concentrated on two aspects of fenitin: its functional mechanisms and its regulation. These form the major part of the review. Steps in iron storage within ferritin molecules consist of Fe(II) oxidation, FE(III) migration and the nucleation and growth of the iron core mineral. H-chains are important for Fe(II) oxidation and L-chains assist in core formation. Iron mobilisation, relevant to ferritin's role as iron reserve, is also discussed. Translational regulation of mammalian ferritin synthesis in response to iron and the apparent links between iron and citrate metabolism through a single molecule with dual function are described. The molecule, when binding a [4Fe-4S] cluster, is a functioning (cytoplasmic) aconitase. When cellular iron is low, loss of the [4Fe-4S] cluster allows the molecule to bind to the 5′-untranslated region (5′-UTR) of the ferritin m-RNA and thus to repress translation. In this form it is known as the iron regulatory protein (IRP) and the stem-loop RNA structure to which it binds is the iron regulatory element (IRE). IREs are found in the 3′-UTR of the transferrin receptor and in the 5′-UTR of erythroid aminolaevulinic acid synthase, enabling tight co-ordination between cellular iron uptake and the synthesis of ferritin and haem. Degradation of ferritin could potentially lead to an increase in toxicity due to uncontrolled release of iron. Degradation within membrane-encapsulated ‘secondary lysosomes’ may avoid this problem and this seems to be the origin of another form of storage iron known as haemosiderin. However, in certain pathological states, massive deposits of ‘haemosiderin’ are found which do not arise directly from ferritin breakdown. Understanding the numerous inter-relationships between the various intracellular iron complexes presents a major challenge.

2,311 citations



Journal ArticleDOI
TL;DR: The road is now open to address individual molecules wired to a conducting surface in their blocked magnetization state, thereby enabling investigation of the elementary interactions between electron transport and magnetism degrees of freedom at the molecular scale.
Abstract: In the field of molecular spintronics, the use of magnetic molecules for information technology is a main target and the observation of magnetic hysteresis on individual molecules organized on surfaces is a necessary step to develop molecular memory arrays. Although simple paramagnetic molecules can show surface-induced magnetic ordering and hysteresis when deposited on ferromagnetic surfaces, information storage at the molecular level requires molecules exhibiting an intrinsic remnant magnetization, like the so-called single-molecule magnets (SMMs). These have been intensively investigated for their rich quantum behaviour but no magnetic hysteresis has been so far reported for monolayers of SMMs on various non-magnetic substrates, most probably owing to the chemical instability of clusters on surfaces. Using X-ray absorption spectroscopy and X-ray magnetic circular dichroism synchrotron-based techniques, pushed to the limits in sensitivity and operated at sub-kelvin temperatures, we have now found that robust, tailor-made Fe(4) complexes retain magnetic hysteresis at gold surfaces. Our results demonstrate that isolated SMMs can be used for storing information. The road is now open to address individual molecules wired to a conducting surface in their blocked magnetization state, thereby enabling investigation of the elementary interactions between electron transport and magnetism degrees of freedom at the molecular scale.

825 citations


Journal ArticleDOI
Matthias Geissler1, Y. XiaInstitutions (1)
Abstract: This article provides an overview of various patterning methodologies, and it is organized into three major sections: generation of patterns, replication of patterns, and three-dimensional patterning. Generation of patterns from scratch is usually accomplished by serial techniques that are able to provide arbitrary features. The writing process can be carried out in many different ways. It can be achieved using a rigid stylus; or a focused beam of photons, electrons, and other energetic particles. It can also be accomplished using an electrical or magnetic field; or through localized add-on of materials such as a liquid-like ink from an external source. In addition, some ordered but relatively simple patterns can be formed by means of self-assembly. In replication of patterns, structural information from a mask, master, or stamp is transferred to multiple copies with the use of an appropriate material. The patterned features on a mask are mainly used to direct a flux of radiation or physical matter from a source onto a substrate, whereas a master/stamp serves as the original for replication based on embossing, molding, or printing. The last section of this article deals with three-dimensional patterning, where both vertical and lateral dimensions of a structure need to be precisely controlled to generate well-defined shapes and profiles. The article is illustrated with various examples derived from recent developments in this field.

621 citations


Network Information
Related Papers (5)

Ricardo Garcia, Ramses V. Martinez +1 more

Ricardo Garcia, Armin W. Knoll +1 more

29 Jan 1999-Science

Richard D. Piner, Jin Zhu +3 more

Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20215
20202
20194
20175
20162
20153