scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Large-scale nanopatterning of single proteins used as carriers of magnetic nanoparticles

TL;DR: A variety of methods based on Coulomb-force-directed assembly of nanoparticles have been proposed, but the supramolecular organization attained from the ‘‘bottom-up’’ approaches either does not allow accurate placement of the desired structures on a specific region of an inhomogeneous surface.
Abstract: However, the supramolecular organization attained from‘‘bottom-up’’approachesiseitherdifficulttoextendfromnano-tomesoscopic length scales or does not allow accurate placement ofthe desired structures on a specific region of an inhomogeneoussurface. Similarly, a variety of methods based on Coulomb-force-directed assembly of nanoparticles have been proposed.

Summary (1 min read)

Jump to:  and [Summary]

Summary

  • Accurate and reproducible patterning of proteins and functional nanoparticles is essential to exploit their properties in nano and microscale devices [1].
  • Electrostatic interactions, capillary forces, surface functionalization and nanolithography can be used in combination or independently to achieve the desired protein organization [2].
  • Here, the authors report a simple yet efficient method to deposit ferritin proteins with nanoscale accuracy over large areas.
  • The selective deposition is driven by the electrostatic interactions existing between the proteins and nanoscale features.
  • By combining a top-down tip-based nanolithography [3] and bottom-up electrostatic interactions the authors have formed regular arrays of ferritin molecules with an accuracy that matches the protein size (~10 nm).
  • Magnetic force measurements confirm the magnetic activity of the deposited nanoparticles.

Did you find this useful? Give us your feedback

Content maybe subject to copyright    Report

NanoSpain2010 23-26 March, 2010 Malaga-Spain
Large-scale nanopatterning of single proteins used as carriers of magnetic nanoparticles
Ramsés V. Martínez, Javier Martínez, Marco Chiesa, Ricardo García
Instituto de Microelectrónica de Madrid, CSIC, Isaac Newton 8, 28760 Tres Cantos, Madrid
(Spain)
mchiesa@imm.cnm.csic.es
Accurate and reproducible patterning of proteins and functional nanoparticles is essential to
exploit their properties in nano and microscale devices [1]. Electrostatic interactions, capillary
forces, surface functionalization and nanolithography can be used in combination or
independently to achieve the desired protein organization [2]. Here, we report a simple yet
efficient method to deposit ferritin proteins with nanoscale accuracy over large areas. The
selective deposition is driven by the electrostatic interactions existing between the proteins
and nanoscale features. The efficiency of the deposition process can be controlled by
changing the pH of the solution. By combining a top-down tip-based nanolithography [3] and
bottom-up electrostatic interactions we have formed regular arrays of ferritin molecules with
an accuracy that matches the protein size (~10 nm). Magnetic force measurements confirm
the magnetic activity of the deposited nanoparticles.
References:
[1] W. Cheng, T. Walter, D. Luo et al., Nature Nanotechnology 3 (2008) 682.
[2] R.V. Martinez, R. Garcia, E. Coronado et al., Adv. Mater. 19 (2007) 291.
[3] R.V. Martínez, J. Martínez, M. Chiesa et al., Adv. Mater. DOI: 10.1002/adma.200902568
Figures:
Fig. 1: Patterning of ferritin molecules by local oxidation nanolithography and silicon functionalization by
APTES at low pH values.
Local Oxidation
pH 3
APTES
Ferritin deposition
Si
250 nm
25 nm
Oral

NanoSpain2010 23-26 March, 2010 Malaga-Spain
Fig. 2: Patterning of ferritin molecules over cm
2
areas by controlled dewetting and surface functionalization at
neutral pH values.
PDMS stamp
Liquid film
Pattern
replication
APTES
pH 6.5
5 µm
10
nm
500 nm
Oral
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the surface potential and the space charge generated during the first stages of atomic force microscopy field-induced oxidation were measured and shown to be an intrinsic feature in local oxidation experiments.
Abstract: We have measured the surface potential and the space charge generated during the first stages of atomic force microscopy field-induced oxidation. Space charge densities are about 1017 cm−3 for oxidation times below 10 ms. In a dry atmosphere, the surface potential is negative. However, in humid air the surface potential could be either positive or negative. This effect is attributed to a screening effect of the water molecules. These results explain and support the use of local oxidation patterns as templates for building molecular architectures. They also establish the space charge build up as an intrinsic feature in local oxidation experiments.

13 citations

Journal ArticleDOI
TL;DR: A method to generate enzyme nanopatterns (using thermolysin as a model system) on a polymer surface is demonstrated using thermochemical scanning probe lithography (tc-SPL), resulting in single-enzyme resolution patterns characterized by atomic force microscopy (AFM) and fluorescence microscopy.
Abstract: The ability to precisely control the localization of enzymes on a surface is critical for several applications including biosensing, bionanoreactors, and single molecule studies. Despite recent advances, fabrication of enzyme patterns with resolution at the single enzyme level is limited by the lack of lithography methods that combine high resolution, compatibility with soft, polymeric structures, ease of fabrication, and high throughput. Here, a method to generate enzyme nanopatterns (using thermolysin as a model system) on a polymer surface is demonstrated using thermochemical scanning probe lithography (tc-SPL). Electrostatic immobilization of negatively charged sulfonated enzymes occurs selectively at positively charged amine nanopatterns produced by thermal deprotection of amines along the side-chain of a methacrylate-based copolymer film via tc-SPL. This process occurs simultaneously with local thermal quasi-3D topographical patterning of the same polymer, offering lateral sub-10 nm resolution, and vertical 1 nm resolution, as well as high throughput (5.2 × 104 μm2/h). The obtained single-enzyme resolution patterns are characterized by atomic force microscopy (AFM) and fluorescence microscopy. The enzyme density, the surface passivation, and the quasi-3D arbitrary geometry of these patterned pockets are directly controlled during the tc-SPL process in a single step without the need of markers or masks. Other unique features of this patterning approach include the combined single-enzyme resolution over mm2 areas and the possibility of fabricating enzymes nanogradients.

13 citations

Journal ArticleDOI
TL;DR: In this paper, aqueous solution of a poly(ethylene glycol)dimethacrylate (PEGDMA) oligomer, a photosensitizer and a reducing agent was used to obtain highly air-permeable monoliths with ordered porous structures.
Abstract: Unidirectional freezing followed by photopolymerization at subzero temperatures was used to obtain highly air-permeable monoliths with ordered porous structures. Scaffolds were obtained from aqueous solutions of a poly(ethylene glycol)dimethacrylate (PEGDMA) oligomer, a photosensitizer and a reducing agent. Solutions were vertically frozen in liquid nitrogen at a controlled rate to induce the oriented growth of ice crystals and then cryo-photopolymerized under blue-light irradiation. Ice crystals were finally removed under vacuum producing macroporous hydrophilic networks with aligned pores. Porosities ranged between 80 and 95%, depending on the initial concentration of PEGDMA. The influence of processing variables on the final properties of the materials was addressed, concerning particularly the effect of porosity and freezing directionality on air permeability. Compared to porous PEGDMA-based monoliths with non-aligned macropores, gas permeability was two to three times higher for oriented scaffolds at the same porosity level, a fact explained by the easier transport of gas molecules through the aligned structures. However, the role of pore orientation on gas permeability was shown to be less marked as porosity increased. The results demonstrate that the use of unidirectional freezing strongly increases the permeability of monolithic samples up to values usually required, for instance, in tissue engineering applications (higher than 2D). These findings provide new perspectives on pore design principles toward future scaffolding of polymeric cross-linked matrices.

13 citations

Journal ArticleDOI
30 Jan 2021-Polymers
TL;DR: In this article, an extensive overview on how multifunctional structured platforms can be fabricated by outlining not only the main polymer patterning methodologies but also by emphasizing various deposition methods that can guide different structures of functional nanomaterials into periodic surface relief patterns.
Abstract: There is an astonishing number of optoelectronic, photonic, biological, sensing, or storage media devices, just to name a few, that rely on a variety of extraordinary periodic surface relief miniaturized patterns fabricated on polymer-covered rigid or flexible substrates. Even more extraordinary is that these surface relief patterns can be further filled, in a more or less ordered fashion, with various functional nanomaterials and thus can lead to the realization of more complex structured architectures. These architectures can serve as multifunctional platforms for the design and the development of a multitude of novel, better performing nanotechnological applications. In this work, we aim to provide an extensive overview on how multifunctional structured platforms can be fabricated by outlining not only the main polymer patterning methodologies but also by emphasizing various deposition methods that can guide different structures of functional nanomaterials into periodic surface relief patterns. Our aim is to provide the readers with a toolbox of the most suitable patterning and deposition methodologies that could be easily identified and further combined when the fabrication of novel structured platforms exhibiting interesting properties is targeted.

13 citations

Journal ArticleDOI
TL;DR: This work focuses on approaches, which allow a controlled spatiotemporal positioning of a single protein on surfaces, enabled by the recent developments in immobilization techniques coherent with the sensitive nature of proteins, defined protein orientation and maintenance of the protein activity at interfaces.
Abstract: Micro- and nanopatterning of proteins on surfaces allows to develop for example high-throughput biosensors in biomedical diagnostics and in general advances the understanding of cell-material interactions in tissue engineering. Today, many techniques are available to generate protein pattern, ranging from technically simple ones, such as micro-contact printing, to highly tunable optical lithography or even technically sophisticated scanning probe lithography. Here, one focus is on the progress made in the development of protein-based materials as positive or negative photoresists allowing micro- to nanostructured scaffolds for biocompatible photonic, electronic and tissue engineering applications. The second one is on approaches, which allow a controlled spatiotemporal positioning of a single protein on surfaces, enabled by the recent developments in immobilization techniques coherent with the sensitive nature of proteins, defined protein orientation and maintenance of the protein activity at interfaces. The third one is on progress in photolithography-based methods, which allow to control the formation of protein-repellant/adhesive polymer brushes.

13 citations

References
More filters
Journal ArticleDOI
TL;DR: A great deal of research effort is now concentrated on two aspects of ferritin: its functional mechanisms and its regulation and the apparent links between iron and citrate metabolism through a single molecule with dual function are described.

2,486 citations

Journal ArticleDOI
TL;DR: The road is now open to address individual molecules wired to a conducting surface in their blocked magnetization state, thereby enabling investigation of the elementary interactions between electron transport and magnetism degrees of freedom at the molecular scale.
Abstract: In the field of molecular spintronics, the use of magnetic molecules for information technology is a main target and the observation of magnetic hysteresis on individual molecules organized on surfaces is a necessary step to develop molecular memory arrays. Although simple paramagnetic molecules can show surface-induced magnetic ordering and hysteresis when deposited on ferromagnetic surfaces, information storage at the molecular level requires molecules exhibiting an intrinsic remnant magnetization, like the so-called single-molecule magnets (SMMs). These have been intensively investigated for their rich quantum behaviour but no magnetic hysteresis has been so far reported for monolayers of SMMs on various non-magnetic substrates, most probably owing to the chemical instability of clusters on surfaces. Using X-ray absorption spectroscopy and X-ray magnetic circular dichroism synchrotron-based techniques, pushed to the limits in sensitivity and operated at sub-kelvin temperatures, we have now found that robust, tailor-made Fe(4) complexes retain magnetic hysteresis at gold surfaces. Our results demonstrate that isolated SMMs can be used for storing information. The road is now open to address individual molecules wired to a conducting surface in their blocked magnetization state, thereby enabling investigation of the elementary interactions between electron transport and magnetism degrees of freedom at the molecular scale.

933 citations

Journal ArticleDOI
TL;DR: An overview of various patterning methodologies can be found in this paper, which is organized into three major sections: generation of patterns, replication of patterns and three-dimensional patterning.
Abstract: This article provides an overview of various patterning methodologies, and it is organized into three major sections: generation of patterns, replication of patterns, and three-dimensional patterning. Generation of patterns from scratch is usually accomplished by serial techniques that are able to provide arbitrary features. The writing process can be carried out in many different ways. It can be achieved using a rigid stylus; or a focused beam of photons, electrons, and other energetic particles. It can also be accomplished using an electrical or magnetic field; or through localized add-on of materials such as a liquid-like ink from an external source. In addition, some ordered but relatively simple patterns can be formed by means of self-assembly. In replication of patterns, structural information from a mask, master, or stamp is transferred to multiple copies with the use of an appropriate material. The patterned features on a mask are mainly used to direct a flux of radiation or physical matter from a source onto a substrate, whereas a master/stamp serves as the original for replication based on embossing, molding, or printing. The last section of this article deals with three-dimensional patterning, where both vertical and lateral dimensions of a structure need to be precisely controlled to generate well-defined shapes and profiles. The article is illustrated with various examples derived from recent developments in this field.

632 citations