scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Large-Scale Reorganization in the Somatosensory Cortex and Thalamus after Sensory Loss in Macaque Monkeys

22 Oct 2008-The Journal of Neuroscience (Society for Neuroscience)-Vol. 28, Iss: 43, pp 11042-11060
TL;DR: A comparison of the extents of deafferentation across the monkeys shows that even if the dorsal column lesion is partial, preserving most of the hand representation, it is sufficient to induce an expansion of the face representation.
Abstract: Adult brains undergo large-scale plastic changes after peripheral and central injuries. Although it has been shown that both the cortical and thalamic representations can reorganize, uncertainties exist regarding the extent, nature, and time course of changes at each level. We have determined how cortical representations in the somatosensory area 3b and the ventroposterior (VP) nucleus of thalamus are affected by long standing unilateral dorsal column lesions at cervical levels in macaque monkeys. In monkeys with recovery periods of 22-23 months, the intact face inputs expanded into the deafferented hand region of area 3b after complete or partial lesions of the dorsal columns. The expansion of the face region could extend all the way medially into the leg and foot representations. In the same monkeys, similar expansions of the face representation take place in the VP nucleus of the thalamus, indicating that both these processing levels undergo similar reorganizations. The receptive fields of the expanded representations were similar in somatosensory cortex and thalamus. In two monkeys, we determined the extent of the brain reorganization immediately after dorsal column lesions. In these monkeys, the deafferented regions of area 3b and the VP nucleus became unresponsive to the peripheral touch immediately after the lesion. No reorganization was seen in the cortex or the VP nucleus. A comparison of the extents of deafferentation across the monkeys shows that even if the dorsal column lesion is partial, preserving most of the hand representation, it is sufficient to induce an expansion of the face representation.
Citations
More filters
Journal ArticleDOI
TL;DR: The discovery that large-scale topographic maps of the body exist throughout the entire primate somatosensory and motor systems at birth is reported, suggesting that this proto-organization is established prenatally, even in areas that are crucial for coordinating and executing complex, ethologically relevant actions in adults.
Abstract: Topographic sensory maps are a prominent feature of the adult primate brain. Here, we asked whether topographic representations of the body are present at birth. Using functional MRI (fMRI), we find that the newborn somatomotor system, spanning frontoparietal cortex and subcortex, comprises multiple topographic representations of the body. The organization of these large-scale body maps was indistinguishable from those in older monkeys. Finer-scale differentiation of individual fingers increased over the first 2 y, suggesting that topographic representations are refined during early development. Last, we found that somatomotor representations were unchanged in 2 visually impaired monkeys who relied on touch for interacting with their environment, demonstrating that massive shifts in early sensory experience in an otherwise anatomically intact brain are insufficient for driving cross-modal plasticity. We propose that a topographic scaffolding is present at birth that both directs and constrains experience-driven modifications throughout somatosensory and motor systems.

25 citations

Journal ArticleDOI
TL;DR: None of the authors' injections, including those into the representation of the tongue, labeled neurons in VPMpc, the thalamic taste nucleus, Thus, area 3b does not appear to be involved in processing taste information from theThalamus.
Abstract: Representations of the parts of the oral cavity and face in somatosensory area 3b of macaque monkeys were identified with microelectrode recordings and injected with different neuroanatomical tracers to reveal patterns of thalamic projections to tongue, teeth, and other representations in primary somatosensory cortex. The locations of injection sites and resulting labeled neurons were further determined by relating sections processed to reveal tracers to those processed for myeloarchitecture in the cortex and multiple architectural stains in the thalamus. The ventroposterior medial sub-nucleus (VPM) for touch was identified as separate from the ventroposterior medial parvicellular nucleus (VPMpc) for taste by differential expression of several types of proteins. Our results revealed somatotopically matched projections from VPM to the part of 3b representing intra-oral structures and the face. Retrogradely labeled cells resulting from injections in area 3b were also found in other thalamic nuclei including: anterior pulvinar (Pa), ventroposterior inferior (VPI), ventroposterior superior (VPS), ventroposterior lateral (VPL), ventral lateral (VL), centre median (CM), central lateral (CL), and medial dorsal (MD). None of our injections, including those into the representation of the tongue, labeled neurons in VPMpc, the thalamic taste nucleus. Thus, area 3b does not appear to be involved in processing taste information from the thalamus. This result stands in contrast to those reported for New World monkeys.

24 citations

Journal ArticleDOI
TL;DR: Whether practice on the motion coherence task promoted the changes in the retinotopic maps in the lesioned hemisphere of patient JS or another patient who had a comparable lesion but had not been given such practice is investigated.
Abstract: We studied patient JS, who had a right occipital infarct that encroached on visual areas V1, V2v, and VP. When tested psychophysically, he was very impaired at detecting the direction of motion in random dot displays where a variable proportion of dots moving in one direction signal were embedded in masking motion noise noise dots. The impairment on this motion coherence task was especially marked when the display was presented to the upper left affected visual quadrant, contralateral to his lesion. However, with extensive training, by 11 months his threshold fell to the level of healthy participants. Training on the motion coherence task generalized to another motion task, the motion discontinuity task, on which he had to detect the presence of an edge that was defined by the difference in the direction of the coherently moving dots signal within the display. He was much better at this task at 8 than 3 months, and this improvement was associated with an increase in the activation of the human MT complex hMT+ and in the kinetic occipital region as shown by repeated fMRI scans. We also used fMRI to perform retinotopic mapping at 3, 8, and 11 months after the infarct. We quantified the retinotopy and areal shifts by measuring the distances between the center of mass of functionally defined areas, computed in spherical surface-based coordinates. The functionally defined retinotopic areas V1, V2v, V2d, and VP were initially smaller in the lesioned right hemisphere, but they increased in size between 3 and 11 months. This change was not found in the normal, left hemisphere of the patient or in either hemispheres of the healthy control participants. We were interested in whether practice on the motion coherence task promoted the changes in the retinotopic maps. We compared the results for patient JS with those from another patient PF who had a comparable lesion but had not been given such practice. We found similar changes in the maps in the lesioned hemisphere of PF. However, PF was only scanned at 3 and 7 months, and the biggest shifts in patient JS were found between 8 and 11 months. Thus, it is important to carry out a prospective study with a trained and untrained group so as to determine whether the patterns of reorganization that we have observed can be further promoted by training.

24 citations


Cites background from "Large-Scale Reorganization in the S..."

  • ...If the lesion is complete, as in the loss of a digit or section of the dorsal column, it is stimulation of the neighboring digit (Merzenich et al., 1984) or face (Jain et al., 2008) that evokes responses....

    [...]

  • ..., 1984) or face (Jain et al., 2008) that evokes responses....

    [...]

Journal ArticleDOI
TL;DR: A functional reorganization of the forepaw cortical representation immediately after thoracic spinal cord hemisection is reported, which is likely important to fully understand the mechanisms underlying long-term cortical reorganization after incomplete spinal cord injuries.

23 citations

Journal ArticleDOI
TL;DR: It is reported that training-independent learning improves tactile perception, not only at the stimulated index finger, but also at the unstimulated face, suggesting that facilitation-based plasticity may operate in the healthy human brain.

22 citations


Cites background from "Large-Scale Reorganization in the S..."

  • ...To date, the theoretical framework within which hand–face border crossings have been interpreted has been one of ‘competition’ [1–4], whereby the face cortical area invades the deprived territory after permanent or transient removal of hand afferent inputs [3,4]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The results indicated that the deprivation caused by monocular suture produced a decrease in the cytochrome oxidase staining of the binocular segment of the deprived geniculate laminae of kittens, leading to a significant decreases in the level of oxidative enzyme activity one to several synapses away.

1,862 citations

Journal ArticleDOI
08 Jun 1995-Nature
TL;DR: A very strong direct relationship is reported between the amount of cortical reorganization and the magnitude of phantom limb pain (but not non-painful phantom phenomena) experienced after arm amputation, indicating that phantom-limb pain is related to, and may be a consequence of, plastic changes in primary somatosensory cortex.
Abstract: Although phantom-limb pain is a frequent consequence of the amputation of an extremity, little is known about its origin. On the basis of the demonstration of substantial plasticity of the somatosensory cortex after amputation or somatosensory deafferentation in adult monkeys, it has been suggested that cortical reorganization could account for some non-painful phantom-limb phenomena in amputees and that cortical reorganization has an adaptive (that is, pain-preventing) function. Theoretical and empirical work on chronic back pain has revealed a positive relationship between the amount of cortical alteration and the magnitude of pain, so we predicted that cortical reorganization and phantom-limb pain should be positively related. Using non-invasive neuromagnetic imaging techniques to determine cortical reorganization in humans, we report a very strong direct relationship (r = 0.93) between the amount of cortical reorganization and the magnitude of phantom limb pain (but not non-painful phantom phenomena) experienced after arm amputation. These data indicate that phantom-limb pain is related to, and may be a consequence of, plastic changes in primary somatosensory cortex.

1,692 citations


"Large-Scale Reorganization in the S..." refers background in this paper

  • ...A small expansion of the face inputs into the hand region of the cortex was seen long after hand or arm amputations (Flor et al., 1995; Florence and Kaas, 1995; Grüsser et al., 2004), or immediately after median and radial nerve injury or block (Silva et al....

    [...]

Journal ArticleDOI
TL;DR: The cortical representations of the hand in area 3b in adult owl monkeys were defined with use of microelectrode mapping techniques 2–8 months after surgical amputation of digit 3, or of both digits 2 and 3.
Abstract: The cortical representations ofthe hand in area 3b in adult owl monkeys were defined with use of microelectrode mapping techniques 2-8 months after surgical amputation of digit 3, or of both digits 2 and 3. Digital nerves were tied to prevent their regeneration within the amputation stump. Suc­ cessive maps were derived in several monkeys to determine the nature of changes in map organization in the same individuals over time. In all monkeys studied, the representations of adjacent digits and pal­ mar surfaces expanded topographically to occupy most or all of the cortical territories formerly representing the amputated digit(s). With the expansion of the representations of these surrounding skin surfaces (1) there were severalfold increases in their magnification and (2) roughly corresponding decreases in receptive field areas. Thus, with increases in magnification, surrounding skin surfaces were represented in correspondingly finer grain, implying that the rule relating receptive field overlap to separation in distance across the cortex (see Sur et aI., '80) was dynamically maintained as receptive fields progressively decreased in size. These studies also revealed that: (1) the discontinuities between the representations of the digits underwent significant translocations (usually by hundreds of microns) after amputation, and sharp new discontinuous boundaries formed where usually separated, expanded digital representa­ tions (e.g., of digits 1 and 4) approached each other in the reorganizing map, implying that these map discontinuities are normally dynamically main­ tained. (2) Changes in receptive field sizes with expansion of representations of surrounding skin surfaces into the deprived cortical zone had a spatial distribution and time course similar to changes in sensory acuity on the stumps of human amputees. This suggests that experience-dependent map changes result in changes in sensory capabilities. (3) The major topographic changes were limited to a cortical zone 500-700 JIm on either side of the initial boundaries of the representation of the amputated digits. More dis­ tant regions did not appear to reorganize (i.e., were not occupied by inputs from surrounding skin surfaces) even many months after amputation. (4) The representations of some skin surfaces moved in entirety to locations within the former territories of representation of amputated digits in every

1,327 citations


"Large-Scale Reorganization in the S..." refers background in this paper

  • ...…the cortical maps has been demonstrated in a variety of mammalian species after different kinds of deprivations including digit or limb amputations (Merzenich et al., 1984; Wall and Cusick, 1984; Calford and Tweedale, 1988; Turnbull and Rasmusson, 1991; Florence et al., 1998), nerve transections…...

    [...]

  • ...Since then, reorganization of the cortical maps has been demonstrated in a variety of mammalian species after different kinds of deprivations including digit or limb amputations (Merzenich et al., 1984; Wall and Cusick, 1984; Calford and Tweedale, 1988; Turnbull and Rasmusson, 1991; Florence et al., 1998), nerve transections (Wall and Kaas, 1985; Garraghty and Kaas, 1991b), dorsal root transections (Pons et al....

    [...]

Journal ArticleDOI
28 Jun 1991-Science
TL;DR: The results show the need for a reevaluation of both the upper limit of cortical reorganization in adult primates and the mechanisms responsible for it.
Abstract: After limited sensory deafferentations in adult primates, somatosensory cortical maps reorganize over a distance of 1 to 2 millimeters mediolaterally, that is, in the dimension along which different body parts are represented. This amount of reorganization was considered to be an upper limit imposed by the size of the projection zones of individual thalamocortical axons, which typically also extend a mediolateral distance of 1 to 2 millimeters. However, after extensive long-term deafferentations in adult primates, changes in cortical maps were found to be an order of magnitude greater than those previously described. These results show the need for a reevaluation of both the upper limit of cortical reorganization in adult primates and the mechanisms responsible for it.

1,051 citations


"Large-Scale Reorganization in the S..." refers background or methods in this paper

  • ...It is possible that this has not been reported before because the foot region of the cortex was not mapped previously (Pons et al., 1991; Jain et al., 1997)....

    [...]

  • ...in macaque monkeys (Pons et al., 1991) and a comparable 5 mm...

    [...]

  • ...After an extensive recovery period the boundaries of the face representation shift medially into the hand region by as much as 10 –14 mm in macaque monkeys (Pons et al., 1991) and a comparable 5 mm in smaller owl monkeys (Jain et al., 1997)....

    [...]

  • ...Limits of plasticity in area 3b The maximal extent of shift in representational boundaries reported before this study is in the range of 10 –14 mm for macaque monkeys (Pons et al., 1991) and 5 mm for smaller brained owl monkeys (Jain et al....

    [...]

  • ...In contrast, after transection of the dorsal roots of the spinal cord from C2 to T4, the deprived hand, arm, and occiput regions of area 3b come to respond to the inputs from the chin (Pons et al., 1991)....

    [...]

Journal ArticleDOI
TL;DR: This paper found that after the median nerve was transected and ligated in adult owl and squirrel monkeys, the cortical sectors representing it within skin surface representations in Areas 3b and 1 were completely occupied by 'new' and expanded representations of surrounding skin fields.

948 citations