scispace - formally typeset
Search or ask a question
Book

Laser Diode Modulation and Noise

31 Jul 1988-
TL;DR: In this paper, the authors present the spectral properties of Fabry-Perot-type laser diodes with respect to light current, threshold current, and quantum efficiency, as well as the effect of nonlinear gain on spectral properties.
Abstract: 1 Introduction.- 2 Basic Laser Characteristics.- 2.1 Double heterostructure characteristics.- 2.2 Direct and indirect semiconductors.- 2.2.1 Energy- and momentum conservation.- 2.2.2 Semiconductor materials for direct and indirect semiconductors.- 2.3 Emission and absorption.- 2.3.1 Density of photon oscillation states.- 2.3.2 Principal mechanisms of radiative transitions.- 2.3.3 Carrier lifetime and lifetime of spontaneous emission.- 2.3.4 Gain and stimulated emission.- 2.4 Lasing characteristics of Fabry-Perot-type lasers.- 2.4.1 Lasing conditions.- 2.4.2 Dynamic characteristics of laser operation.- 2.4.3 Light current characteristics, threshold current and quantum efficiency.- 2.4.4 Basic laser structures.- 2.4.5 Modifications for the spontaneous emission term.- 2.5 Dynamic single-mode laser structures.- 2.5.1 DFB laser characteristics.- References.- 3 Longitudinal Mode Spectrum of Lasing Emission.- 3.1 Multimode rate equations.- 3.2 Spectral envelope for Fabry-1 Introduction.- 2 Basic Laser Characteristics.- 2.1 Double heterostructure characteristics.- 2.2 Direct and indirect semiconductors.- 2.2.1 Energy- and momentum conservation.- 2.2.2 Semiconductor materials for direct and indirect semiconductors.- 2.3 Emission and absorption.- 2.3.1 Density of photon oscillation states.- 2.3.2 Principal mechanisms of radiative transitions.- 2.3.3 Carrier lifetime and lifetime of spontaneous emission.- 2.3.4 Gain and stimulated emission.- 2.4 Lasing characteristics of Fabry-Perot-type lasers.- 2.4.1 Lasing conditions.- 2.4.2 Dynamic characteristics of laser operation.- 2.4.3 Light current characteristics, threshold current and quantum efficiency.- 2.4.4 Basic laser structures.- 2.4.5 Modifications for the spontaneous emission term.- 2.5 Dynamic single-mode laser structures.- 2.5.1 DFB laser characteristics.- References.- 3 Longitudinal Mode Spectrum of Lasing Emission.- 3.1 Multimode rate equations.- 3.2 Spectral envelope for Fabry-Perot-type lasers (linear gain).- 3.3 Influence of nonlinear gain on the spectral characteristics.- 3.3.1 Symmetric nonlinear gain.- 3.3.2 Asymmetric nonlinear gain.- 3.3.3 Nonlinear gain, conclusions.- References.- 4 Intensity-Modulation Characteristics of Laser Diodes.- 4.1 Modulation characteristics by studying single-mode rate equations.- 4.1.1 Turn-on delay.- 4.1.2 Rate equations, small signal analysis.- 4.1.3 Relaxation oscillation damping.- 4.1.4 Upper limits for the modulation bandwidth of laser diodes.- 4.2 Influence of lateral carrier diffusion on relaxation oscillation damping.- 4.3 Modulation bandwidth limits due to parasitic elements.- 4.4 Examples for high speed modulation of laser diodes.- 4.5 Modulation and longitudinal mode spectrum.- 4.5.1 Transient spectra of laser diodes.- 4.5.2 Lasing spectra under high speed modulation.- 4.5.3 Dynamic single-mode condition.- 4.6 Modulation with binary signals.- 4.7 Harmonic and intermodulation distortions (without fibre interaction).- 4.7.1 Harmonic and intermodulation distortions for low modulation frequencies.- 4.7.2 Harmonic and intermodulation distortions for high modulation frequencies.- References.- 5 Frequency-Modulation Characteristics of Laser Diodes.- 5.1 Relation between intensity-modulation and frequency modulation.- 5.2 Current/frequency-modulation characteristics.- 5.3 Chirp effects in directly modulated laser diodes.- 5.3.1 Spectral line broadening due to laser chirping.- 5.3.2 Chirp-reduction by proper pulse shaping.- 5.3.3 Time-bandwidth product of chirped pulses.- 5.3.4 Transmission of chirped pulses over single-mode fibres.- 5.4 Possibilities of modifying the chirp parameter ?.- 5.4.1 Dispersion of the chirp parameter ?.- 5.4.2 Chirp of laser diodes, coupled to optical cavities.- References.- 6 Instabilities and Bistability in Laser Diodes.- 6.1 Repetitive self-pulsations due to lateral instabilities.- 6.2 Instability and bistability in laser diodes with segmented contacts.- References.- 7 Noise Characteristics of Solitary Laser Diodes.- 7.1 Relative intensity noise (RIN).- 7.1.1 Basic properties of noise signals.- 7.1.2 Definition and measurement of RIN.- 7.1.3 Requirement of RIN for intensity modulated systems.- 7.2 Introduction of the spontaneous emission noise.- 7.3 Intensity noise of laser diodes.- 7.3.1 Intensity noise of laser diodes by studying single-mode rate equations.- 7.3.2 Mode partition noise.- 7.3.3 Mode partition noise analysis for nearly single-mode lasers.- 7.3.4 Mode-hopping noise.- 7.3.5 1/f-intensity noise.- 7.4 Statistics of intensity noise.- 7.4.1 Statistics of amplified spontaneous emission.- 7.4.2 Probability density distribution for the total laser light output.- 7.4.3 Statistics of mode partition noise.- 7.4.4 Turn-on jitter in laser diodes.- 7.5 Mode partition noise for the transmission of pulse-code modulated (PCM)-signals.- 7.5.1 Multimode lasers.- 7.5.2 The mode partition coefficient k.- 7.5.3 Nearly single-mode lasers.- 7.6 Phase and frequency noise.- 7.6.1 Phase and frequency noise characterization in general.- 7.6.2 Spectral line shape for white frequency noise.- 7.6.3 Spectral line shape for 1/f-frequency noise.- 7.6.4 Frequency noise and spectral linewidth for single-mode laser diodes.- 7.6.5 Power-independent contribution to the linewidth of laser diodes.- 7.6.6 Correlation between FM-noise and AM-noise.- References.- 8 Noise in Interferometers Including Modal Noise and Distortions.- 8.1 Noise in interferometers.- 8.1.1 Complex degree of coherence.- 8.1.2 Interferometric noise analysis for single-mode lasers.- 8.1.3 Interferometric set-ups for measuring the linewidth and the degree of coherence.- 8.1.4 Interferometric noise analysis for multimode lasers.- 8.2 Modal noise.- 8.2.1 Modal noise for monochromatic light sources.- 8.2.2 Modal noise for single-mode lasers with finite spectral linewidth.- 8.2.3 Modal noise for multimode laser diodes.- 8.2.4 Modal distortions.- 8.3 Modal noise and distortions in single-mode fibres.- References.- 9 Semiconductor Lasers with Optical Feedback.- 9.1 Amplitude and phase conditions for laser diodes with external cavities.- 9.1.1 Short external reflectors for longitudinal mode stabilization.- 9.1.2 Emission frequency shifts due to optical feedback.- 9.1.3 Single external cavity mode condition.- 9.1.4 Spectral linewidth for laser diodes with external optical feedback.- 9.2 Dynamics of laser diodes with external reflections.- 9.2.1 Derivation of the time-dependent electric field.- 9.2.2 Modulation characteristics of external-cavity lasers.- 9.3 Laser diodes with distant reflections.- 9.3.1 Classification of feedback regimes.- 9.3.2 Phase and frequency noise of laser diodes with distant reflectors.- 9.3.3 Intensity noise in laser diodes with distant reflectors.- 9.3.4 Coherence collapse.- 9.3.5 Tolerable feedback levels.- References.- 10 Laser Diodes with Negative Electronic Feedback.- 10.1 Modulation characteristics of laser diodes with negative electronic feedback.- 10.2 Linewidth narrowing and phase noise reduction with negative electronic feedback.- References.- 11 Circuitry for Driving the Laser Diode.- 11.1 Schemes for stabilizing the bias current.- 11.2 Laser drivers with optoelectronic integration.- References.
Citations
More filters
Journal ArticleDOI
TL;DR: A review of the use of diode lasers in atomic physics with an extensive list of references can be found in this article, where the authors discuss the relevant characteristics of dioder lasers and explain how to purchase and use them.
Abstract: We present a review of the use of diode lasers in atomic physics with an extensive list of references. We discuss the relevant characteristics of diode lasers and explain how to purchase and use them. We also review the various techniques that have been used to control and narrow the spectral outputs of diode lasers. Finally we present a number of examples illustrating the use of diode lasers in atomic physics experiments.

843 citations

Journal ArticleDOI
TL;DR: In this article, the laser diode self-mixing (or feedback) interferometric technique is reviewed as a general tool for remote sensing applications and the operating principle is outlined, and the attainable performance is compared to conventional coherent detection.
Abstract: The laser diode self-mixing (or feedback) interferometric technique is reviewed as a general tool for remote sensing applications. The operating principle is outlined, and the attainable performance is compared to conventional coherent detection. Applications to metrology and to new sensing schemes are described, experimental results are reported and the overall performance of the sensors are assessed.

554 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a modern approach to the theoretical and experimental study of complex nonlinear behavior of a semiconductor laser with optical injection-an example of a widely applied and technologically relevant forced nonlinear oscillator, and show that careful bifurcation analysis of a rate equation model yields a deeper understanding of already studied physical phenomena, and discovery of new dynamical effects, such as multipulse excitability.

407 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed and implemented a WDM-PON system as a platform for triple-play service (TPS), which employs an amplified spontaneous emission (ASE)-injected Fabry-Pe/spl acute/rot laser diode scheme.
Abstract: It is anticipated that more than 75 Mb/s per subscriber is required for the convergence service such as triple-play service (TPS) Among several types of high-speed access network technologies, wavelength-division-multiplexing passive optical network (WDM-PON) is the most favorable for the required bandwidth in the near future Furthermore, WDM technologies, such as athermal arrayed-waveguide grating (AWG) and low-cost light source, have matured enough to be applied in the access network In this paper, the authors propose and implement a WDM-PON system as a platform for TPS The system employs an amplified spontaneous emission (ASE)-injected Fabry-Pe/spl acute/rot laser diode scheme It has 32 channels of 125 Mb/s and adopts Ethernet as Layer 2 Multicast and virtual local area network features are used for the integration of services such as Internet protocol high-definition broadcast, voice-over Internet protocol, video on demand, and video telephone The services were demonstrated using the WDM-PON system

395 citations

Journal ArticleDOI
TL;DR: In this article, a novel wavelength division multiplexing (WDM) source employing an uncooled and unisolated Fabry-Perot semiconductor laser diode (F-P SLD) was proposed.
Abstract: We propose and demonstrate a novel wavelength-division-multiplexing (WDM) source employing an uncooled and unisolated Fabry-Perot semiconductor laser diode (F-P SLD). The output wavelength of F-P SLD is locked to the externally injected narrow-band amplified spontaneous emission (ASE). The measured side-mode suppression ratio of the wavelength-locked F-P SLD is larger than 29 dB, when the extinction ratio of the directly modulated light output is above 13 dB. We achieved error-free transmission of 155-Mb/s data over 120 km of nondispersion-shifted fiber. We also propose a cost-effective WDM passive optical network architecture based on the proposed light sources.

391 citations


Cites background from "Laser Diode Modulation and Noise"

  • ...The origin of the fluctuation is randomness of the spontaneous emission coupled to each mode [5]....

    [...]

  • ...the mode fluctuation [4]–[5]....

    [...]