scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Laser-induced shock compression of monocrystalline copper: characterization and analysis

TL;DR: In this paper, a method for estimating dislocation densities is proposed, based on nucleation of loops at the shock front and their extension due to residual shear stresses behind the front.
About: This article is published in Acta Materialia.The article was published on 2003-03-14. It has received 219 citations till now. The article focuses on the topics: Slip (materials science) & Crystal twinning.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the structural changes in copper samples (99.90% Cu) subjected to severe plastic deformation using a shock loading technique have been studied, where the samples are extruded through two or three channels disposed at an angle of 90°.
Abstract: The structural changes in copper samples (99.90% Cu) subjected to severe plastic deformation using a shock loading technique have been studied. The samples are extruded through two or three channels disposed at an angle of 90°. The microstructure of the copper samples changes under the simultaneous action of high-rate deformation and a high temperature. A relation between the dynamic pressing parameters and the specific features of the structure forming in the samples is established. Dynamic pressing is shown to cause substantial grain refinement (by three orders of magnitude) in copper after two-pass extrusion.

23 citations

Journal ArticleDOI
TL;DR: In this paper, a spatially resolved X-ray diffraction method was applied to understand the arrangements of voids, geometrically necessary dislocations and strain gradient distributions in samples of Al (1/2/3) and Cu (0/0/1) single crystals shocked to incipient spallation fracture.

23 citations

Journal ArticleDOI
TL;DR: In this article, the melting properties of platinum over a wide range of pressures were investigated, including the 300 K isotherm and the Hugoniot P-V curves, and they found strongly anisotropic plastic deformations and various metastable structures under high strain rates.

23 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe recent developments in the science of metal deformation and phase transitions at extreme pressures and strain rates, and present a detailed analysis of the mechanisms of deformation.
Abstract: The powerful lasers being constructed for inertially confined fusion generate enormous pressures extremely rapidly. These extraordinary machines both motivate the need and provide the means to study materials under extreme pressures and loading rates. In this frontier of materials science, an experiment may last for just 10s of nanoseconds. Processes familiar at ambient conditions, such as phase transformations and plastic flow, operate far from equilibrium and show significant kinetic effects. Here we describe recent developments in the science of metal deformation and phase transitions at extreme pressures and strain rates. Ramp loading techniques enable the study of solids at high pressures (100s of GPa) at moderate temperatures. Advanced diagnostics, such as in situ x-ray scattering, allow time-resolved material characterization in the short-lived high-pressure state, including crystal structure (phase), elastic compression, the size of microstructural features, and defect densities. Computer simulation, especially molecular dynamics, provides insight into the mechanisms of deformation and phase change.

23 citations

Journal ArticleDOI
TL;DR: In this article, the effect of a nonconstant dislocation drag coefficient on the very high strain rate regime within an analytic model describing mobile-immobile dislocation intersections applicable to fcc polycrystals was discussed.

22 citations

References
More filters
Book
27 Sep 1994
TL;DR: In this paper, the authors present a method to produce dynamic deformation at high strain rates by using Shear Bands (Thermoplastic Shear Instabilities) and dynamic fracture.
Abstract: Dynamic Deformation and Waves. Elastic Waves. Plastic Waves. Shock Waves. Shock Waves: Equations of State. Differential Form of Conservation Equations and Numerical Solutions to More Complex Problems. Shock Wave Attenuation, Interaction, and Reflection. Shock Wave-Induced Phase Transformations and Chemical Changes. Explosive-Material Interactions. Detonation. Experimental Techniques: Diagnostic Tools. Experimental Techniques: Methods to Produce Dynamic Deformation. Plastic Deformation at High Strain Rates. Plastic Deformation in Shock Waves. Shear Bands (Thermoplastic Shear Instabilities). Dynamic Fracture. Applications. Indexes.

2,609 citations


"Laser-induced shock compression of ..." refers background or methods in this paper

  • ...[22]....

    [...]

  • ...The dislocation density can be expressed as a function of pressure, P, through one of the equations obtained directly from the Rankine–Hugoniot equations and the equation of state [22]:...

    [...]

  • ...In a similar manner, the residual temperature, TR, can be obtained from [22]:...

    [...]

Journal ArticleDOI
TL;DR: An improved description of copper and ironcylinder impact (Taylor) test results has been obtained through the use of dislocation-mechanics-based constitutive relations in the Lagrangian material dynamics computer program EPIC•2.
Abstract: An improved description of copper‐ and iron‐cylinder impact (Taylor) test results has been obtained through the use of dislocation‐mechanics‐based constitutive relations in the Lagrangian material dynamics computer program EPIC‐2. The effects of strain hardening, strain‐rate hardening, and thermal softening based on thermal activation analysis have been incorporated into a reasonably accurate constitutive relation for copper. The relation has a relatively simple expression and should be applicable to a wide range of fcc materials. The effect of grain size is included. A relation for iron is also presented. It also has a simple expression and is applicable to other bcc materials but is presently incomplete, since the important effect of deformation twinning in bcc materials is not included. A possible method of acounting for twinning is discussed and will be reported on more fully in future work. A main point made here is that each material structure type (fcc, bcc, hcp) will have its own constitutive beha...

1,718 citations

Journal ArticleDOI
TL;DR: In this article, a constitutive expression for the twinning stress in BCC metals is developed using dislocation emission from a source and the formation of pile-ups, as rate-controlling mechanism.

1,366 citations

Journal ArticleDOI
James R. Rice1
TL;DR: In this paper, a periodic relation between shear stress and atomic shear displacement is assumed to hold along the most highly stressed slip plane emanating from a crack tip, which allows some small slip displacement to occur near the tip in response to small applied loading and, with increase in loading, the incipient dislocation configuration becomes unstable and leads to a fully formed dislocation which is driven away from the crack.
Abstract: Dislocation nucleation from a stressed crack tip is analyzed based on the Peierls concept. A periodic relation between shear stress and atomic shear displacement is assumed to hold along the most highly stressed slip plane emanating from a crack tip. This allows some small slip displacement to occur near the tip in response to small applied loading and, with increase in loading, the incipient dislocation configuration becomes unstable and leads to a fully formed dislocation which is driven away from the crack. An exact solution for the loading at that nucleation instability is developed via the J -integral for the case when the crack and slip planes coincide, and an approximate solution is given when they do not. Solutions are also given for emission of dissociated dislocations, especially partial dislocation pairs in fcc crystals. The level of applied stress intensity factors required for dislocation nucleation is shown to be proportional to √γ us , where γ us , the unstable stacking energy, is a new solid state parameter identified by the analysis. It is the maximum energy encountered in the block-like sliding along a slip plane, in the Burgers vector direction, of one half of a crystal relative to the other. Approximate estimates of γ us are summarized and the results are used to evaluate brittle vs ductile response in fcc and bcc metals in terms of the competition between dislocation nucleation and Griffith cleavage at a crack tip. The predictions seem compatible with known behavior and also show that in many cases solids which are predicted to first cleave under pure mode I loading should instead first emit dislocations when that loading includes very small amounts of mode II and III shear. The analysis in this paper also reveals a feature of the near-tip slip distribution corresponding to the saddle point energy configuration for cracks that are loaded below the nucleation threshold, as is of interest for thermal activation.

1,320 citations

Journal ArticleDOI
01 Jan 1940
TL;DR: In this paper, the size of a dislocation and critical shear stress for its motion were calculated for a single dislocation with respect to the size and motion of the dislocation.
Abstract: Calculations are made of the size of a dislocation and of the critical shear stress for its motion.

1,226 citations