scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Latent Fingerprint Matching

01 Jan 2011-IEEE Transactions on Pattern Analysis and Machine Intelligence (IEEE Computer Society)-Vol. 33, Iss: 1, pp 88-100
TL;DR: The experimental results indicate that singularity, ridge quality map, and ridge flow map are the most effective features in improving the matching accuracy.
Abstract: Latent fingerprint identification is of critical importance to law enforcement agencies in identifying suspects: Latent fingerprints are inadvertent impressions left by fingers on surfaces of objects. While tremendous progress has been made in plain and rolled fingerprint matching, latent fingerprint matching continues to be a difficult problem. Poor quality of ridge impressions, small finger area, and large nonlinear distortion are the main difficulties in latent fingerprint matching compared to plain or rolled fingerprint matching. We propose a system for matching latent fingerprints found at crime scenes to rolled fingerprints enrolled in law enforcement databases. In addition to minutiae, we also use extended features, including singularity, ridge quality map, ridge flow map, ridge wavelength map, and skeleton. We tested our system by matching 258 latents in the NIST SD27 database against a background database of 29,257 rolled fingerprints obtained by combining the NIST SD4, SD14, and SD27 databases. The minutiae-based baseline rank-1 identification rate of 34.9 percent was improved to 74 percent when extended features were used. In order to evaluate the relative importance of each extended feature, these features were incrementally used in the order of their cost in marking by latent experts. The experimental results indicate that singularity, ridge quality map, and ridge flow map are the most effective features in improving the matching accuracy.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: An extensive review of biometric technology is presented here, focusing on mono-modal biometric systems along with their architecture and information fusion levels.

351 citations


Cites background from "Latent Fingerprint Matching"

  • ...However, most of the commercially available systems use level 2 features or minutiae points for recognition whereas level 3 features offer robust recognition against poor quality or latent fingerprint images [7]....

    [...]

Journal ArticleDOI
TL;DR: Experimental results on the challenging NIST SD27 latent fingerprint database and an overlapped latent fingerprints database demonstrate the advantages of the proposed orientation field estimation algorithm over conventional algorithms.
Abstract: Identifying latent fingerprints is of vital importance for law enforcement agencies to apprehend criminals and terrorists. Compared to live-scan and inked fingerprints, the image quality of latent fingerprints is much lower, with complex image background, unclear ridge structure, and even overlapping patterns. A robust orientation field estimation algorithm is indispensable for enhancing and recognizing poor quality latents. However, conventional orientation field estimation algorithms, which can satisfactorily process most live-scan and inked fingerprints, do not provide acceptable results for most latents. We believe that a major limitation of conventional algorithms is that they do not utilize prior knowledge of the ridge structure in fingerprints. Inspired by spelling correction techniques in natural language processing, we propose a novel fingerprint orientation field estimation algorithm based on prior knowledge of fingerprint structure. We represent prior knowledge of fingerprints using a dictionary of reference orientation patches. which is constructed using a set of true orientation fields, and the compatibility constraint between neighboring orientation patches. Orientation field estimation for latents is posed as an energy minimization problem, which is solved by loopy belief propagation. Experimental results on the challenging NIST SD27 latent fingerprint database and an overlapped latent fingerprint database demonstrate the advantages of the proposed orientation field estimation algorithm over conventional algorithms.

153 citations


Cites methods from "Latent Fingerprint Matching"

  • ...Inspired by spelling correction techniques in natural language processing, we propose a novel fingerprint orientation field estimation algorithm based on prior knowledge of fingerprint structure....

    [...]

Journal ArticleDOI
TL;DR: Li et al. as discussed by the authors proposed an automated latent fingerprint recognition algorithm that utilizes Convolutional Neural Networks (ConvNets) for ridge flow estimation and minutiae descriptor extraction, and extract complementary templates (two minutia templates and one texture template) to represent the latent.
Abstract: Latent fingerprints are one of the most important and widely used evidence in law enforcement and forensic agencies worldwide. Yet, NIST evaluations show that the performance of state-of-the-art latent recognition systems is far from satisfactory. An automated latent fingerprint recognition system with high accuracy is essential to compare latents found at crime scenes to a large collection of reference prints to generate a candidate list of possible mates. In this paper, we propose an automated latent fingerprint recognition algorithm that utilizes Convolutional Neural Networks (ConvNets) for ridge flow estimation and minutiae descriptor extraction, and extract complementary templates (two minutiae templates and one texture template) to represent the latent. The comparison scores between the latent and a reference print based on the three templates are fused to retrieve a short candidate list from the reference database. Experimental results show that the rank-1 identification accuracies (query latent is matched with its true mate in the reference database) are 64.7 percent for the NIST SD27 and 75.3 percent for the WVU latent databases, against a reference database of 100K rolled prints. These results are the best among published papers on latent recognition and competitive with the performance (66.7 and 70.8 percent rank-1 accuracies on NIST SD27 and WVU DB, respectively) of a leading COTS latent Automated Fingerprint Identification System (AFIS). By score-level (rank-level) fusion of our system with the commercial off-the-shelf (COTS) latent AFIS, the overall rank-1 identification performance can be improved from 64.7 and 75.3 to 73.3 percent (74.4 percent) and 76.6 percent (78.4 percent) on NIST SD27 and WVU latent databases, respectively.

139 citations

Journal ArticleDOI
TL;DR: A review and categorize the vast number of fingerprint matching methods proposed in the specialized literature, focusing on local minutiae-based matching algorithms, which provide good performance with an excellent trade-off between efficacy and efficiency.

126 citations


Cites background from "Latent Fingerprint Matching"

  • ...• Latent fingerprint matching: it is a more complicated problem because these fingerprints are inadvertent impressions left by fingers on surfaces [70, 128]....

    [...]

References
More filters
Book
10 Mar 2005
TL;DR: This unique reference work is an absolutely essential resource for all biometric security professionals, researchers, and systems administrators.
Abstract: A major new professional reference work on fingerprint security systems and technology from leading international researchers in the field Handbook provides authoritative and comprehensive coverage of all major topics, concepts, and methods for fingerprint security systems This unique reference work is an absolutely essential resource for all biometric security professionals, researchers, and systems administrators

3,821 citations


"Latent Fingerprint Matching" refers background in this paper

  • ...INTRODUCTION Fingerprint images can be broadly classified into three categories, namely, (i) rolled/full, (ii) plain/flat and (iii) latent [1]–[3] (see Figure 1)....

    [...]

Journal ArticleDOI
TL;DR: This work presents tools for hierarchical clustering of imaged objects according to the shapes of their boundaries, learning of probability models for clusters of shapes, and testing of newly observed shapes under competing probability models.
Abstract: Using a differential-geometric treatment of planar shapes, we present tools for: 1) hierarchical clustering of imaged objects according to the shapes of their boundaries, 2) learning of probability models for clusters of shapes, and 3) testing of newly observed shapes under competing probability models. Clustering at any level of hierarchy is performed using a minimum variance type criterion and a Markov process. Statistical means of clusters provide shapes to be clustered at the next higher level, thus building a hierarchy of shapes. Using finite-dimensional approximations of spaces tangent to the shape space at sample means, we (implicitly) impose probability models on the shape space, and results are illustrated via random sampling and classification (hypothesis testing). Together, hierarchical clustering and hypothesis testing provide an efficient framework for shape retrieval. Examples are presented using shapes and images from ETH, Surrey, and AMCOM databases.

2,858 citations

Book
06 Sep 2016
TL;DR: In this article, the authors proposed a planar procrustes analysis for two-dimensional data and showed that it is possible to estimate the size and shape of a shape in images.
Abstract: Preliminaries: Size Measures and Shape Coordinates. Preliminaries: Planar Procrustes Analysis. Shape Space and Distance. General Procrustes Methods. Shape Models for Two Dimensional Data. Tangent Space Inference. Size--and--Shape. Distributions for Higher Dimensions. Deformations and Describing Shape Change. Shape in Images. Additional Topics. References and Author Index. Index.

2,410 citations


"Latent Fingerprint Matching" refers methods in this paper

  • ...Based on all the matching minutia pairs identified in the previous step, we compute a new set of alignment parameters using the Procrustes algorithm [14]....

    [...]

Journal ArticleDOI
TL;DR: Study of the performance of different normalization techniques and fusion rules in the context of a multimodal biometric system based on the face, fingerprint and hand-geometry traits of a user found that the application of min-max, z-score, and tanh normalization schemes followed by a simple sum of scores fusion method results in better recognition performance compared to other methods.

2,021 citations


"Latent Fingerprint Matching" refers background in this paper

  • ...This particular scheme for fusion is chosen since it is more resilient to noise in either of the two scores [16]....

    [...]

Journal ArticleDOI
TL;DR: An improved version of the minutia extraction algorithm proposed by Ratha et al. (1995), which is much faster and more reliable, is implemented for extracting features from an input fingerprint image captured with an online inkless scanner and an alignment-based elastic matching algorithm has been developed.
Abstract: Fingerprint verification is one of the most reliable personal identification methods. However, manual fingerprint verification is incapable of meeting today's increasing performance requirements. An automatic fingerprint identification system (AFIS) is needed. This paper describes the design and implementation of an online fingerprint verification system which operates in two stages: minutia extraction and minutia matching. An improved version of the minutia extraction algorithm proposed by Ratha et al. (1995), which is much faster and more reliable, is implemented for extracting features from an input fingerprint image captured with an online inkless scanner. For minutia matching, an alignment-based elastic matching algorithm has been developed. This algorithm is capable of finding the correspondences between minutiae in the input image and the stored template without resorting to exhaustive search and has the ability of adaptively compensating for the nonlinear deformations and inexact pose transformations between fingerprints. The system has been tested on two sets of fingerprint images captured with inkless scanners. The verification accuracy is found to be acceptable. Typically, a complete fingerprint verification procedure takes, on an average, about eight seconds on a SPARC 20 workstation. These experimental results show that our system meets the response time requirements of online verification with high accuracy.

1,376 citations