scispace - formally typeset
Open AccessJournal ArticleDOI

Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO

Reads0
Chats0
TLDR
In this paper, the authors describe vector measurements of the current-induced effective field in Ta|CoFeB|MgO heterostructures and show that the effective field exhibits a significant dependence on the Ta and CoFeB layer thicknesses.
Abstract
Current-induced effective magnetic fields can provide efficient ways of electrically manipulating the magnetization of ultrathin magnetic heterostructures. Two effects, known as the Rashba spin orbit field and the spin Hall spin torque, have been reported to be responsible for the generation of the effective field. However, a quantitative understanding of the effective field, including its direction with respect to the current flow, is lacking. Here we describe vector measurements of the current-induced effective field in Ta|CoFeB|MgO heterostructrures. The effective field exhibits a significant dependence on the Ta and CoFeB layer thicknesses. In particular, a 1 nm thickness variation of the Ta layer can change the magnitude of the effective field by nearly two orders of magnitude. Moreover, its sign changes when the Ta layer thickness is reduced, indicating that there are two competing effects contributing to it. Our results illustrate that the presence of atomically thin metals can profoundly change the landscape for controlling magnetic moments in magnetic heterostructures electrically.

read more

Citations
More filters
Journal ArticleDOI

Spin Hall effects

TL;DR: In solid-state materials with strong relativistic spin-orbit coupling, charge currents generate transverse spin currents as discussed by the authors and the associated spin Hall and inverse spin Hall effects distinguish between charge and spin current where electron charge is a conserved quantity but its spin direction is not.
Journal ArticleDOI

Current-driven dynamics of chiral ferromagnetic domain walls

TL;DR: This work directly confirms the DW chirality and rigidity by examining current-driven DW dynamics with magnetic fields applied perpendicular and parallel to the spin spiral and resolves the origin of controversial experimental results.
Journal ArticleDOI

Chiral spin torque at magnetic domain walls

TL;DR: An internal effective magnetic field arises from a Dzyaloshinskii-Moriya interaction at the Co/Pt interfaces and, in concert with spin Hall currents, drives the domain walls in lock-step along the nanowire.
Journal ArticleDOI

Spin-transfer torque generated by a topological insulator

TL;DR: In this article, it was shown that charge current flowing in-plane in a thin film of the topological insulator bismuth selenide (Bi2Se3) at room temperature can indeed exert a strong spin-transfer torque on an adjacent ferromagnetic permalloy (Ni81Fe19) thin film, with a direction consistent with that expected from the topologically surface state.
Journal ArticleDOI

Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures

TL;DR: This work reports on the three-dimensional vector measurement of SOTs in AlOx/Co/Pt and MgO/CoFeB/Ta trilayers using harmonic analysis of the anomalous and planar Hall effects and demonstrates that heavy metal/ferromagnetic layers allow for two different Sots having odd and even behaviour with respect to magnetization reversal.
References
More filters
Journal ArticleDOI

Spin-torque switching with the giant spin hall effect of tantalum

TL;DR: In this paper, a giant spin Hall effect (SHE) in β-tantalum was shown to generate spin currents intense enough to induce spin-torque switching of ferromagnets at room temperature.
Journal ArticleDOI

A perpendicular-anisotropy CoFeB–MgO magnetic tunnel junction

TL;DR: Inter interfacial perpendicular anisotropy between the ferromagnetic electrodes and the tunnel barrier of the MTJ is used by employing the material combination of CoFeB-MgO, a system widely adopted to produce a giant tunnel magnetoresistance ratio in MTJs with in-plane an isotropy.
Journal ArticleDOI

Oscillatory effects and the magnetic susceptibility of carriers in inversion layers

TL;DR: In this paper, the spin-orbit interaction Hamiltonian HSO = alpha ( sigma *k) was used to change the usual patterns of B-1-periodic oscillations; some oscillations are strongly suppressed due to the diminishing of the gaps between adjacent levels and new oscillations appear due to intersections of levels.
Journal ArticleDOI

Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection

TL;DR: To prove the potential of in-plane current switching for spintronic applications, this work constructs a reprogrammable magnetic switch that can be integrated into non-volatile memory and logic architectures.
Journal ArticleDOI

Spin-Torque Ferromagnetic Resonance Induced by the Spin Hall Effect

TL;DR: In this article, the spin Hall effect in a thin film with strong spin-orbit scattering can excite magnetic precession in an adjacent ferromagnetic film, and the ratio of these two signals allows a quantitative determination of the spin current and spin Hall angle.
Related Papers (5)