scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Leaf onset in the northern hemisphere triggered by daytime temperature

TL;DR: This work shows that the interannual anomalies of LUD during 1982–2011 are triggered by daytime (Tmax) more than by nighttime temperature (Tmin), and suggests a new conceptual framework of leaf onset using daytime temperature to improve the performance of phenology modules in current Earth system models.
Abstract: Recent warming significantly advanced leaf onset in the northern hemisphere. This signal cannot be accurately reproduced by current models parameterized by daily mean temperature (Tmean). Here using in situ observations of leaf unfolding dates (LUDs) in Europe and the United States, we show that the interannual anomalies of LUD during 1982–2011 are triggered by daytime (Tmax) more than by nighttime temperature (Tmin). Furthermore, an increase of 1 Ci nTmax would advance LUD by 4.7 days in Europe and 4.3 days in the United States, more than the conventional temperature sensitivity estimated from Tmean. The triggering role of Tmax, rather than the Tmin or Tmean variable, is also supported by analysis of the large-scale patterns of satellite-derived vegetation green-up in spring in the northern hemisphere (430N). Our results suggest a new conceptual framework of leaf onset using daytime temperature to improve the performance of phenology modules in current Earth system

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Evidence is provided for impacts of late spring frosts on spring phenology, which have been underappreciated in research on phenological sensitivity to climate but should be included in phenology models.
Abstract: Impacts of climatic means on spring phenology are well documented, whereas the role of climatic variance, such as occurrence of spring frosts, has long been neglected. A large elevational gradient of forests on the southeastern Tibetan Plateau provides an ideal platform to explore correlates of spring phenology and environmental factors. We tested the hypothesis that spring frost was a major factor regulating the timing of bud-leaf phenology by combining 5 years of in situ phenological observations of Abies georgei var. smithii with concurrent air temperature data along two altitudinal gradients. Mean lapse rate for the onset of bud swelling and leaf unfolding was 3.1 ± 0.5 days/100 m and 3.0 ± 0.6 days/100 m, respectively. Random forest analysis and conditional inference trees revealed that the frequency of freezing events was a critical factor in determining the timing of bud swelling, independent of topographic differences, varying accumulation of chilling days, and degree-days. In contrast, the onset of leaf unfolding was primarily controlled by the bud swelling onset. Thus, the timing of bud swelling and leaf unfolding appear to be controlled directly and indirectly, respectively, by spring frost. Using space-for-time substitution, the frequency of spring freezing events decreased by 7.1 days with 1 °C of warming. This study provides evidence for impacts of late spring frosts on spring phenology, which have been underappreciated in research on phenological sensitivity to climate but should be included in phenology models. Fewer spring freezing events with warming have important implications for the upward migration of alpine forests and treelines.

18 citations


Cites background from "Leaf onset in the northern hemisphe..."

  • ...However, the drivers of phenology remain partially identified and quantified (Richardson et al. 2013; Piao et al. 2015; Shen et al. 2016)....

    [...]

Journal ArticleDOI
TL;DR: In this article, the interannual variability of CO2 fluxes of temperate forests in continental East Asia was explored via direct measurements via eddy covariance over 11 years (2008-2018).

18 citations

Journal ArticleDOI
TL;DR: In this paper, the authors decompose gross primary production into three periods, green-up, maturity and senescence, and derive their corresponding GPP (GPPgp, GPPmp and GPPsp, respectively) from a newly developed time series of satellite-based global GPP to study spatio-temporal dynamics of seasonal GPP.
Abstract: Aim: To study global patterns and temporal changes in the seasonal dynamics (quantity and seasonal distribution) of terrestrial gross carbon uptake in response to global environmental change. Location: Global. Time period: 2000–2016. Major taxa studied: Terrestrial ecosystems. Methods: Following a phenology-based definition of photosynthetic seasonality, we decompose gross primary production (GPP) into three periods, green-up, maturity and senescence, and derive their corresponding GPP (GPPgp, GPPmp and GPPsp, respectively) from a newly developed time series of satellite-based global GPP to study spatio-temporal dynamics of seasonal GPP. Results: We find that the global fraction of GPPsp (19.8%) is larger than GPPgp (14.3%), indicating a globally asymmetric seasonal distribution of gross carbon uptake by terrestrial ecosystems. Globally, GPPmp plays a dominant role in shaping spatial patterns and increasing/decreasing trends in GPP, while GPPgp/GPPsp contributes to increasing GPP at the regional scale. Higher fractions of GPPgp/GPPmp (lower of GPPsp), as well as the co-occurrence of increasing GPP and non-tree vegetation cover in major croplands, are likely to be caused by agricultural intensification. Global changes in GPPgp and GPPsp are closely related to changes in their seasonal distributions (R =.86/.8, respectively), whereas this relationship is weaker for GPPmp (R =.53). Finally, high correlations are observed between changes in GPPgp and GPPsp and changes in their durations (R =.78/.78, respectively), while GPPmp shows a relatively lower correlation with its duration (R =.67). Main conclusions: The asymmetric spatio-temporal patterns in the seasonal dynamics of global terrestrial gross carbon uptake found here have been substantially reshaped by anthropogenic land-use/cover changes and changes in photosynthetic phenology. Compared to calendar-based meteorological seasons more suitable for temperate/subpolar ecosystems, our phenology-based approach is expected to provide an alternative starting point for a better understanding of global spatio-temporal changes in the seasonal dynamics of terrestrial ecosystem processes and functioning under accelerating global change. (Less)

18 citations

Journal ArticleDOI
TL;DR: The results showed that the spring phenology was delayed with increasing latitude of the boreal forest, and the results suggest that diurnal temperatures should be added to the forest terrestrial ecosystem model.
Abstract: Vegetation phenology is the most intuitive and sensitive biological indicator of environmental conditions, and the start of the season (SOS) can reflect the rapid response of terrestrial ecosystems to climate change. At present, the model based on mean temperature neglects the role of the daytime maximum temperature (TMAX) and the nighttime minimum temperature (TMIN) in providing temperature accumulation and cold conditions at leaf onset. This study analyzed the spatiotemporal variations of spring phenology for the boreal forest from 2001 to 2017 based on the moderate-resolution imaging spectro-radiometer (MODIS) enhanced vegetation index (EVI) data (MOD13A2) and investigated the asymmetric effects of daytime and nighttime warming on the boreal forest spring phenology during TMAX and TMIN preseason by partial correlation analysis. The results showed that the spring phenology was delayed with increasing latitude of the boreal forest. Approximately 91.37% of the region showed an advancing trend during the study period, with an average advancement rate of 3.38 ± 0.08 days/decade, and the change rates of different land cover types differed, especially in open shrubland. The length of the TMIN preseason was longer than that of the TMAX preseason and diurnal temperatures showed an asymmetrical increase during different preseasons. The daytime and nighttime warming effects on the boreal forest are asymmetrical. The TMAX has a greater impact on the vegetation spring phenology than TMIN as a whole and the effect also has seasonal differences; the TMAX mainly affects the SOS in spring, while TMIN has a greater impact in winter. The asymmetric effects of daytime and nighttime warming on the SOS in the boreal forest were highlighted in this study, and the results suggest that diurnal temperatures should be added to the forest terrestrial ecosystem model.

18 citations


Cites background or result from "Leaf onset in the northern hemisphe..."

  • ...These studies based on long time series satellite data have dynamically monitored vegetation Remote Sens. 2019, 11, 1651; doi:10.3390/rs11141651 www.mdpi.com/journal/remotesensing Remote Sens. 2019, 11, 1651 2 of 18 phenology at different scales, such as hemisphere [13,14], continental [6,15,16] and national [17] scales, and the SOS showed an apparent advancing trend during the past three decades in the Northern Hemisphere [16,18,19]....

    [...]

  • ...In most parts of the Northern Hemisphere, our study also confirms that TMAX has a greater impact on SOS than TMIN, as reported in previous studies [23,26]....

    [...]

  • ...Recent studies have shown that the increase in TMAX has a greater impact on the spring phenology than TMIN in the Northern Hemisphere [23]....

    [...]

  • ...Since vegetation in most areas of the boreal forest began to green-up in mid-May, the TMAX preseason was mainly distributed between mid-February and May of each year, which is consistent with spring in the Northern Hemisphere....

    [...]

  • ...The boreal forest is located in the high latitudes of the Northern Hemisphere, and the TMIN is much lower than the forcing temperature of vegetation growth during the preseason period; therefore, the TMAX has a greater contribution to the SOS....

    [...]

References
More filters
01 Jan 2007
TL;DR: The first volume of the IPCC's Fourth Assessment Report as mentioned in this paper was published in 2007 and covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.
Abstract: This report is the first volume of the IPCC's Fourth Assessment Report. It covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.

32,826 citations

01 Jan 2013
TL;DR: In this paper, a summary of issues to assist policymakers, a technical summary, and a list of frequently-asked questions are presented, with an emphasis on physical science issues.
Abstract: Report summarizing climate change issues in 2013, with an emphasis on physical science. It includes a summary of issues to assist policymakers, a technical summary, and a list of frequently-asked questions.

7,858 citations

01 Jan 2007
TL;DR: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris.
Abstract: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris, Carlos Gay García, Clair Hanson, Hideo Harasawa, Kevin Hennessy, Saleemul Huq, Roger Jones, Lucka Kajfež Bogataj, David Karoly, Richard Klein, Zbigniew Kundzewicz, Murari Lal, Rodel Lasco, Geoff Love, Xianfu Lu, Graciela Magrín, Luis José Mata, Roger McLean, Bettina Menne, Guy Midgley, Nobuo Mimura, Monirul Qader Mirza, José Moreno, Linda Mortsch, Isabelle Niang-Diop, Robert Nicholls, Béla Nováky, Leonard Nurse, Anthony Nyong, Michael Oppenheimer, Jean Palutikof, Martin Parry, Anand Patwardhan, Patricia Romero Lankao, Cynthia Rosenzweig, Stephen Schneider, Serguei Semenov, Joel Smith, John Stone, Jean-Pascal van Ypersele, David Vaughan, Coleen Vogel, Thomas Wilbanks, Poh Poh Wong, Shaohong Wu, Gary Yohe

7,720 citations

Journal ArticleDOI
TL;DR: In this article, the authors used an enormous systematic phenological network data set of more than 125 000 observational series of 542 plant and 19 animal species in 21 European countries (1971-2000) and concluded that previously published results of phenological changes were not biased by reporting or publication predisposition.
Abstract: Global climate change impacts can already be tracked in many physical and biological systems; in particular, terrestrial ecosystems provide a consistent picture of observed changes. One of the preferred indicators is phenology, the science of natural recurring events, as their recorded dates provide a high-temporal resolution of ongoing changes. Thus, numerous analyses have demonstrated an earlier onset of spring events for mid and higher latitudes and a lengthening of the growing season. However, published single-site or single-species studies are particularly open to suspicion of being biased towards predominantly reporting climate change-induced impacts. No comprehensive study or meta-analysis has so far examined the possible lack of evidence for changes or shifts at sites where no temperature change is observed. We used an enormous systematic phenological network data set of more than 125 000 observational series of 542 plant and 19 animal species in 21 European countries (1971–2000). Our results showed that 78% of all leafing, flowering and fruiting records advanced (30% significantly) and only 3% were significantly delayed, whereas the signal of leaf colouring/fall is ambiguous. We conclude that previously published results of phenological changes were not biased by reporting or publication predisposition: the average advance of spring/summer was 2.5 days decade � 1 in Europe. Our analysis of 254 mean national time series undoubtedly demonstrates that species’ phenology is responsive to temperature of the preceding

2,457 citations

Related Papers (5)