scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Leaf onset in the northern hemisphere triggered by daytime temperature

TL;DR: This work shows that the interannual anomalies of LUD during 1982–2011 are triggered by daytime (Tmax) more than by nighttime temperature (Tmin), and suggests a new conceptual framework of leaf onset using daytime temperature to improve the performance of phenology modules in current Earth system models.
Abstract: Recent warming significantly advanced leaf onset in the northern hemisphere. This signal cannot be accurately reproduced by current models parameterized by daily mean temperature (Tmean). Here using in situ observations of leaf unfolding dates (LUDs) in Europe and the United States, we show that the interannual anomalies of LUD during 1982–2011 are triggered by daytime (Tmax) more than by nighttime temperature (Tmin). Furthermore, an increase of 1 Ci nTmax would advance LUD by 4.7 days in Europe and 4.3 days in the United States, more than the conventional temperature sensitivity estimated from Tmean. The triggering role of Tmax, rather than the Tmin or Tmean variable, is also supported by analysis of the large-scale patterns of satellite-derived vegetation green-up in spring in the northern hemisphere (430N). Our results suggest a new conceptual framework of leaf onset using daytime temperature to improve the performance of phenology modules in current Earth system

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors assessed and compared the effects of daytime temperature, nighttime temperature, and photoperiod on leaf unfolding during 1951-1980 and 1981-2013, and provided evidence that daytime warming instead of nighttime warming accounts for the slowdown in the advancing spring phenology.
Abstract: Earlier spring phenological events have been widely reported in plants under global warming. Recent studies reported a slowdown in the warming-induced advanced spring phenology in temperate regions. However, previous research mainly focused on daily mean temperature, thus neglecting the asymmetric phenological responses to daytime and nighttime temperature. Using long-term records of leaf unfolding in eight deciduous species at 1300 sites across central Europe, we assessed and compared the effects of daytime temperature, nighttime temperature, and photoperiod on leaf unfolding during 1951-1980 and 1981-2013. Although leaf unfolding was advanced by daytime warming during 1951-2013, the advancing responses of leaf unfolding significantly decreased from 1951-1980 to 1981-2013 due to a lower accumulation of chilling units by daytime warming. Nighttime warming delayed leaf unfolding during 1951-1980 but advanced it during 1981-2013 due to a higher accumulation of chilling units by nighttime warming. In contrast, critical daylength and plasticity of leaf unfolding dates remained unchanged between 1951 and 2013. Our study provided evidence that daytime warming instead of nighttime warming accounts for the slowdown in the advancing spring phenology and implied that nighttime warming-induced earlier spring phenology may be buffering the slowdown of the advanced spring phenology by daytime warming. The response of spring phenology to nighttime temperature may override that to daytime temperature under the actual trends in global warming.

12 citations

Journal ArticleDOI
TL;DR: The findings suggest that warming hiatuses differentially affect vegetation greening and depend on meteorological factors, especially the main Meteorological factors.
Abstract: There have been hiatuses in global warming since the 1990s, and their potential impacts have attracted extensive attention and discussion. Changes in temperature not only directly affect the greening of vegetation but can also indirectly alter both the growth state and the growth tendency of vegetation by altering other climatic elements. The middle-high latitudes of the Northern Hemisphere (NH) constitute the region that has experienced the most warming in recent decades; therefore, identifying the effects of warming hiatuses on the vegetation greening in that region is of great importance. Using satellite-derived Normalized Difference Vegetation Index (NDVI) data and climatological observation data from 1982–2013, we investigated hiatuses in warming trends and their impact on vegetation greenness in the NH. Our results show that the regions with warming hiatuses in the NH accounted for 50.1% of the total area and were concentrated in Mongolia, central China, and other areas. Among these regions, 18.8% of the vegetation greenness was inhibited in the warming hiatus areas, but 31.3% of the vegetation grew faster. Because temperature was the main positive climatic factor in central China, the warming hiatuses caused the slow vegetation greening rate. However, precipitation was the main positive climatic factor affecting vegetation greenness in Mongolia; an increase in precipitation accelerated vegetation greening. The regions without a warming hiatus, which were mainly distributed in northern Russia, northern central Asia, and other areas, accounted for 49.9% of the total area. Among these regions, 21.4% of the vegetation grew faster over time, but 28.5% of the vegetation was inhibited. Temperature was the main positive factor affecting vegetation greenness in northern Russia; an increase in temperature promoted vegetation greening. However, radiation was the main positive climatic factor in northern central Asia; reductions in radiation inhibited the greenness of vegetation. Our findings suggest that warming hiatuses differentially affect vegetation greening and depend on meteorological factors, especially the main meteorological factors.

12 citations

Journal ArticleDOI
TL;DR: The effects of frost during the growing season on Vgreenup and Vwithering in Northeast China were highlighted in this study, and the results provide a useful reference for understanding local vegetation responses to global climate change.
Abstract: Vegetation phenology and photosynthetic primary production have changed simultaneously over the past three decades, thus impacting the velocity of vegetation greenup (Vgreenup) and withering (Vwithering). Although climate warming reduces the frequency of frost events, vegetation is exposed more frequently to frost due to the extension of the growing season. Currently, little is known about the effect of frost during the growing season on Vgreenup and Vwithering. This study analyzed spatiotemporal variations in Vgreenup and Vwithering in Northeast China between 1982 to 2015 using Global Inventory Modeling and Mapping Studies Normalized Difference Vegetation Index (GIMMS 3g NDVI) data. Frost days and frost intensity were selected as indicators to investigate the influence of frost during the growing season on Vgreenup and Vwithering, respectively. Increased frost days during the growing season slowed Vgreenup and Vwithering. The number of frost days had a greater impact on Vwithering compared to Vgreenup. In addition, Vgreenup and Vwithering of forests were more vulnerable to frost days, while frost days had a lesser effect on grasslands. In contrast to frost days, frost intensity, which generally decreased during the growing season, accelerated Vgreenup and Vwithering for all land cover types. Changes in frost intensity had less of an impact on forests, whereas the leaf structure of grasslands is relatively simple and thus more vulnerable to frost intensity. The effects of frost during the growing season on Vgreenup and Vwithering in Northeast China were highlighted in this study, and the results provide a useful reference for understanding local vegetation responses to global climate change.

12 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the Normalized Difference Vegetation Index (NDVI) from 1982 to 2015 to evaluate the latest changes in vegetation dynamics in HMA and their climate-driving mechanisms.
Abstract: Remote sensing and ground vegetation observation data show that climate warming promotes global vegetation greening, and the increase in air temperature in High Mountain Asia (HMA) is more than twice the global average. Under such a drastic warming in climate, how have the vegetation dynamics in HMA changed? In this study, we use the Normalized Difference Vegetation Index (NDVI) from 1982 to 2015 to evaluate the latest changes in vegetation dynamics in HMA and their climate-driving mechanisms. The results show that over the past 30 years, HMA has generally followed a "warm-wet" trend, with temperatures charting a continuous rise. During 1982-1998 precipitation increased (1.16 mm yr-1), but depicted to reverse since 1998 (- 2.73 mm yr-1). Meanwhile, the NDVI in HMA increased (0.012 per decade) prior to 1998, after which the trend reversed and declined (- 0.005 per decade). The main reason for the browning of HMA vegetation is the dual effects of warming and precipitation changes. As mentioned, the increase in air temperature in HMA exceeds the global average. The increase of water vapor pressure deficit caused by global warming accelerates the loss and consumption of surface water, and also aggravates the soil water deficit. That is to say, the abnormal increase of land evapotranspiration far exceeds the precipitation, and the regional water shortage increases. Climate change is the primary factor driving these vegetation and water dynamics, with the largest proportion reaching 41.9%.

12 citations

Journal ArticleDOI
TL;DR: A multiple linear regression model was established to quantitatively determine the contributions of the time lag effects of hydrothermal variation on GUD, and showed that the rate of change in curvature algorithm (RCCmax) had better performance in capturing the spatiotemporal variation of winter wheat GUD relative to the other three methods.

11 citations

References
More filters
01 Jan 2007
TL;DR: The first volume of the IPCC's Fourth Assessment Report as mentioned in this paper was published in 2007 and covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.
Abstract: This report is the first volume of the IPCC's Fourth Assessment Report. It covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.

32,826 citations

01 Jan 2013
TL;DR: In this paper, a summary of issues to assist policymakers, a technical summary, and a list of frequently-asked questions are presented, with an emphasis on physical science issues.
Abstract: Report summarizing climate change issues in 2013, with an emphasis on physical science. It includes a summary of issues to assist policymakers, a technical summary, and a list of frequently-asked questions.

7,858 citations

01 Jan 2007
TL;DR: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris.
Abstract: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris, Carlos Gay García, Clair Hanson, Hideo Harasawa, Kevin Hennessy, Saleemul Huq, Roger Jones, Lucka Kajfež Bogataj, David Karoly, Richard Klein, Zbigniew Kundzewicz, Murari Lal, Rodel Lasco, Geoff Love, Xianfu Lu, Graciela Magrín, Luis José Mata, Roger McLean, Bettina Menne, Guy Midgley, Nobuo Mimura, Monirul Qader Mirza, José Moreno, Linda Mortsch, Isabelle Niang-Diop, Robert Nicholls, Béla Nováky, Leonard Nurse, Anthony Nyong, Michael Oppenheimer, Jean Palutikof, Martin Parry, Anand Patwardhan, Patricia Romero Lankao, Cynthia Rosenzweig, Stephen Schneider, Serguei Semenov, Joel Smith, John Stone, Jean-Pascal van Ypersele, David Vaughan, Coleen Vogel, Thomas Wilbanks, Poh Poh Wong, Shaohong Wu, Gary Yohe

7,720 citations

Journal ArticleDOI
TL;DR: In this article, the authors used an enormous systematic phenological network data set of more than 125 000 observational series of 542 plant and 19 animal species in 21 European countries (1971-2000) and concluded that previously published results of phenological changes were not biased by reporting or publication predisposition.
Abstract: Global climate change impacts can already be tracked in many physical and biological systems; in particular, terrestrial ecosystems provide a consistent picture of observed changes. One of the preferred indicators is phenology, the science of natural recurring events, as their recorded dates provide a high-temporal resolution of ongoing changes. Thus, numerous analyses have demonstrated an earlier onset of spring events for mid and higher latitudes and a lengthening of the growing season. However, published single-site or single-species studies are particularly open to suspicion of being biased towards predominantly reporting climate change-induced impacts. No comprehensive study or meta-analysis has so far examined the possible lack of evidence for changes or shifts at sites where no temperature change is observed. We used an enormous systematic phenological network data set of more than 125 000 observational series of 542 plant and 19 animal species in 21 European countries (1971–2000). Our results showed that 78% of all leafing, flowering and fruiting records advanced (30% significantly) and only 3% were significantly delayed, whereas the signal of leaf colouring/fall is ambiguous. We conclude that previously published results of phenological changes were not biased by reporting or publication predisposition: the average advance of spring/summer was 2.5 days decade � 1 in Europe. Our analysis of 254 mean national time series undoubtedly demonstrates that species’ phenology is responsive to temperature of the preceding

2,457 citations

Related Papers (5)