scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Leaf onset in the northern hemisphere triggered by daytime temperature

TL;DR: This work shows that the interannual anomalies of LUD during 1982–2011 are triggered by daytime (Tmax) more than by nighttime temperature (Tmin), and suggests a new conceptual framework of leaf onset using daytime temperature to improve the performance of phenology modules in current Earth system models.
Abstract: Recent warming significantly advanced leaf onset in the northern hemisphere. This signal cannot be accurately reproduced by current models parameterized by daily mean temperature (Tmean). Here using in situ observations of leaf unfolding dates (LUDs) in Europe and the United States, we show that the interannual anomalies of LUD during 1982–2011 are triggered by daytime (Tmax) more than by nighttime temperature (Tmin). Furthermore, an increase of 1 Ci nTmax would advance LUD by 4.7 days in Europe and 4.3 days in the United States, more than the conventional temperature sensitivity estimated from Tmean. The triggering role of Tmax, rather than the Tmin or Tmean variable, is also supported by analysis of the large-scale patterns of satellite-derived vegetation green-up in spring in the northern hemisphere (430N). Our results suggest a new conceptual framework of leaf onset using daytime temperature to improve the performance of phenology modules in current Earth system

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The USA National Phenology Network was established in 2007 to formalize standardized phenology monitoring across the country as discussed by the authors , where participants range from backyard observers with an interest in nature to researchers and natural resource managers asking specific questions.
Abstract: Abstract The USA National Phenology Network was established in 2007 to formalize standardized phenology monitoring across the country. The aims of the network are to collect, store, and share phenology data and information to support scientific discovery, decision-making, an appreciation for phenology, and equitable engagement within the network. To support these aims, the network launched Nature's Notebook, a rigorous platform for monitoring plant and animal phenology, in 2009. Since the launch of Nature's Notebook, participants across the country have contributed over 30 million phenology records. The participants range from backyard observers with an interest in nature to researchers and natural resource managers asking specific questions. We survey the breadth of studies and applied decisions that have used Nature's Notebook and the consequent data. The dimensionality of the data set maintained by the network is a function of Nature's Notebook users; this insight is key to shaping the network’s future data collection activities.

5 citations

Journal ArticleDOI
TL;DR: In this paper , the authors have discussed the significant changes of rainfall pattern and their influence in Sikkim state, India and discussed the effects of climate variability exacerbate existing social and economic encounters across the area.

5 citations

Journal ArticleDOI
TL;DR: In this paper, a Bayesian additive regression tree (BART) approach was used to model the relationship between Landsat-derived Normalized Difference Vegetation Index (NDVI) time series, temperature and precipitation in the 15 years after a stand-replacing fire.
Abstract: Prolonged dry periods and increased temperatures that result from anthropogenic climate change have been shown to increase the frequency and severity of wildfires in the boreal region. There is growing evidence that such changes in fire regime can reduce forest resilience and drive shifts in post-fire plant successional trajectories. The response of post-fire vegetation communities to climate variability is under-studied, despite being a critical phase determining the ultimate successional conclusion. This study investigated the responses of post-fire recruited species to climate change and inter-annual variability at 16 study sites that experienced high-severity fire events, mostly in early 2000, within the Scots pine forest-steppe zone of southeastern Siberia, Russia. These sites were originally dominated by Scots pine, and by 2018, they were recruited by different successional species. Additionally, three mature Scots pine stands were included for comparison. A Bayesian Additive Regression Trees (BART) approach was used to model the relationship between Landsat-derived Normalized Difference Vegetation Index (NDVI) time series, temperature and precipitation in the 15 years after a stand-replacing fire. Using the resulting BART models, together with six projected climate scenarios with increased temperature and enhanced inner-annual precipitation variability, we simulated NDVI at 5-year intervals for 15 years post-fire. Our results show that the BART models performed well, with in-sample Pseudo-R2 varying from 0.49 to 0.95 for fire-disturbed sites. Increased temperature enhanced greenness across all sites and across all three time periods since fires, exhibiting a positive feedback in a warming environment. Repeatedly dry spring periods reduced NDVI at all the sites and wetter summer periods following such dry springs could not compensate for this, indicating that a prolonged dry spring has a strong impact consistently over the entire early developmental stages from the initial 5 years to 15 years post-fire. Further, young forests showed higher climate sensitivity compared to the mature forest, irrespective of species and projected climatic conditions. Our findings suggest that a dry spring not only increases fire risk, but also delays recovery of boreal forests in southern Siberia. It also highlights the importance of changing rainfall seasonality as well as total rainfall in a changing climate for post-fire recovery of forest.

5 citations

Journal ArticleDOI
TL;DR: The results suggest that a higher temporal resolution such as temperatures during daytime and nighttime, and higher spatial resolution should be taken into account to improve the accuracy of phenological model predictions under global change scenarios.
Abstract: There is evidence that the ongoing climate change is happening through nighttime rather than daytime warming. How such a daily-asymmetric warming modifies plant phenology is still unclear. We investigated the effects of asymmetric warming on bud break by daily monitoring seedlings belonging to 26 black spruce [Picea mariana (Mill.) BSP.] and 15 balsam fir [Abies balsamea (L.) Mill.] provenances from the native range in Canada. Seedlings were subjected to either daytime or nighttime warming in three growth chambers at temperatures ranging between 10 and 24 °C. On average, a warming of 4 °C advanced the timings of bud break in both species by 2.4 days, with the later phases being more sensitive to the treatment. Bud break of both species responded more strongly to daytime warming, with the bud break occurred 1.2 and 3.2 days earlier under daytime than nighttime warming in black spruce and balsam fir, respectively. A marked ecotypic differentiation was only observed in black spruce that originated from provenances distributed broadly across Canada, with seedlings from the warmest provenance completing bud break 8.3 days later than those from the coldest one. However, no significant effect of provenance was observed for balsam fir, the narrowly distributed species. Overall, the above results suggest that a higher temporal resolution such as temperatures during daytime and nighttime, and higher spatial resolution should be taken into account to improve the accuracy of phenological model predictions under global change scenarios. Phenological models based on daily average temperature should take into account the diverging impacts of asymmetric warming on plant phenology. Our findings may indicate that the influence of warming on plant phenology may be less dramatic than expected.

4 citations

References
More filters
01 Jan 2007
TL;DR: The first volume of the IPCC's Fourth Assessment Report as mentioned in this paper was published in 2007 and covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.
Abstract: This report is the first volume of the IPCC's Fourth Assessment Report. It covers several topics including the extensive range of observations now available for the atmosphere and surface, changes in sea level, assesses the paleoclimatic perspective, climate change causes both natural and anthropogenic, and climate models for projections of global climate.

32,826 citations

01 Jan 2013
TL;DR: In this paper, a summary of issues to assist policymakers, a technical summary, and a list of frequently-asked questions are presented, with an emphasis on physical science issues.
Abstract: Report summarizing climate change issues in 2013, with an emphasis on physical science. It includes a summary of issues to assist policymakers, a technical summary, and a list of frequently-asked questions.

7,858 citations

01 Jan 2007
TL;DR: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris.
Abstract: Drafting Authors: Neil Adger, Pramod Aggarwal, Shardul Agrawala, Joseph Alcamo, Abdelkader Allali, Oleg Anisimov, Nigel Arnell, Michel Boko, Osvaldo Canziani, Timothy Carter, Gino Casassa, Ulisses Confalonieri, Rex Victor Cruz, Edmundo de Alba Alcaraz, William Easterling, Christopher Field, Andreas Fischlin, Blair Fitzharris, Carlos Gay García, Clair Hanson, Hideo Harasawa, Kevin Hennessy, Saleemul Huq, Roger Jones, Lucka Kajfež Bogataj, David Karoly, Richard Klein, Zbigniew Kundzewicz, Murari Lal, Rodel Lasco, Geoff Love, Xianfu Lu, Graciela Magrín, Luis José Mata, Roger McLean, Bettina Menne, Guy Midgley, Nobuo Mimura, Monirul Qader Mirza, José Moreno, Linda Mortsch, Isabelle Niang-Diop, Robert Nicholls, Béla Nováky, Leonard Nurse, Anthony Nyong, Michael Oppenheimer, Jean Palutikof, Martin Parry, Anand Patwardhan, Patricia Romero Lankao, Cynthia Rosenzweig, Stephen Schneider, Serguei Semenov, Joel Smith, John Stone, Jean-Pascal van Ypersele, David Vaughan, Coleen Vogel, Thomas Wilbanks, Poh Poh Wong, Shaohong Wu, Gary Yohe

7,720 citations

Journal ArticleDOI
TL;DR: In this article, the authors used an enormous systematic phenological network data set of more than 125 000 observational series of 542 plant and 19 animal species in 21 European countries (1971-2000) and concluded that previously published results of phenological changes were not biased by reporting or publication predisposition.
Abstract: Global climate change impacts can already be tracked in many physical and biological systems; in particular, terrestrial ecosystems provide a consistent picture of observed changes. One of the preferred indicators is phenology, the science of natural recurring events, as their recorded dates provide a high-temporal resolution of ongoing changes. Thus, numerous analyses have demonstrated an earlier onset of spring events for mid and higher latitudes and a lengthening of the growing season. However, published single-site or single-species studies are particularly open to suspicion of being biased towards predominantly reporting climate change-induced impacts. No comprehensive study or meta-analysis has so far examined the possible lack of evidence for changes or shifts at sites where no temperature change is observed. We used an enormous systematic phenological network data set of more than 125 000 observational series of 542 plant and 19 animal species in 21 European countries (1971–2000). Our results showed that 78% of all leafing, flowering and fruiting records advanced (30% significantly) and only 3% were significantly delayed, whereas the signal of leaf colouring/fall is ambiguous. We conclude that previously published results of phenological changes were not biased by reporting or publication predisposition: the average advance of spring/summer was 2.5 days decade � 1 in Europe. Our analysis of 254 mean national time series undoubtedly demonstrates that species’ phenology is responsive to temperature of the preceding

2,457 citations

Related Papers (5)