scispace - formally typeset
Open AccessJournal ArticleDOI

Leaf onset in the northern hemisphere triggered by daytime temperature

Reads0
Chats0
TLDR
This work shows that the interannual anomalies of LUD during 1982–2011 are triggered by daytime (Tmax) more than by nighttime temperature (Tmin), and suggests a new conceptual framework of leaf onset using daytime temperature to improve the performance of phenology modules in current Earth system models.
Abstract
Recent warming significantly advanced leaf onset in the northern hemisphere. This signal cannot be accurately reproduced by current models parameterized by daily mean temperature (Tmean). Here using in situ observations of leaf unfolding dates (LUDs) in Europe and the United States, we show that the interannual anomalies of LUD during 1982–2011 are triggered by daytime (Tmax) more than by nighttime temperature (Tmin). Furthermore, an increase of 1 Ci nTmax would advance LUD by 4.7 days in Europe and 4.3 days in the United States, more than the conventional temperature sensitivity estimated from Tmean. The triggering role of Tmax, rather than the Tmin or Tmean variable, is also supported by analysis of the large-scale patterns of satellite-derived vegetation green-up in spring in the northern hemisphere (430N). Our results suggest a new conceptual framework of leaf onset using daytime temperature to improve the performance of phenology modules in current Earth system

read more

Content maybe subject to copyright    Report

Citations
More filters

Intercomparison, interpretation, and assessment of spring phenology in North America estimated from remote sensing for 1982-2006 M I C H A E L A. W H I T E*, K I R S T E N M. DE BEURS w , K A M E L D I D A Nz, D AV I D W. I N O U Y E § ,

Allard De Wit, +1 more
TL;DR: In this paper, the authors assess 10 start-of-spring (SOS) methods for North America between 1982 and 2006 and find that SOS estimates were more related to the first leaf and first flowers expanding phenological stages.
Journal ArticleDOI

Plant phenology and global climate change: Current progresses and challenges

TL;DR: It is suggested that future studies should primarily focus on using new observation tools to improve the understanding of tropical plant phenology, on improving process-based phenology modeling, and on the scaling of phenology from species to landscape-level.
Journal ArticleDOI

Recent Third Pole’s Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis

TL;DR: The Third Pole (TP) is experiencing rapid warming and is currently in its warmest period in the past 2,000 years as mentioned in this paper, and the latest development in multidisciplinary TP research is reviewed in this paper.
Journal ArticleDOI

Plants and climate change: complexities and surprises.

TL;DR: It is argued that inconclusive, unexpected, or counter-intuitive results should be embraced in order to understand apparent disconnects between theory, prediction, and observation, and that the need for ecologists to conduct community-level experiments in systems that replicate multiple aspects of ACC is highlighted.
References
More filters
Journal ArticleDOI

From Caprio's lilacs to the USA National Phenology Network

TL;DR: The USA National Phenology Network (USNP) as discussed by the authors is a volunteer-driven infrastructure for phenological monitoring in the US, and it has been used to collect phenological observations according to standardized protocols.
Journal ArticleDOI

Detecting nonlinear response of spring phenology to climate change by Bayesian analysis

TL;DR: The findings suggest that many species which have exhibited earlier bud break are responding to warmer spring temperatures, but may shift into responding more to winter temperatures (lack of adequate chilling) as warming continues.
Journal ArticleDOI

An augmented Arabidopsis phenology model reveals seasonal temperature control of flowering time

TL;DR: This study has revealed an important seasonal effect of night temperatures on flowering time and suggests that different molecular pathways interact and predominate in natural environments that change seasonally.
Journal ArticleDOI

Synoptic Events and Spring Phenology

TL;DR: In this article, the Synoptic Events and Spring Phenology are discussed. But they focus on synoptic events and spring phenology, and do not discuss the relationship between them.
Related Papers (5)