scispace - formally typeset
Open AccessPosted Content

Learn to Forget: Machine Unlearning via Neuron Masking

Reads0
Chats0
TLDR
In this paper, the authors proposed a uniform metric called for-getting rate to measure the effectiveness of a machine unlearning method, which is based on the concept of membership inference and describes the transformation rate of the eliminated data from "memorized" to "unknown".
Abstract
Nowadays, machine learning models, especially neural networks, become prevalent in many real-world applications.These models are trained based on a one-way trip from user data: as long as users contribute their data, there is no way to withdraw; and it is well-known that a neural network memorizes its training data. This contradicts the "right to be forgotten" clause of GDPR, potentially leading to law violations. To this end, machine unlearning becomes a popular research topic, which allows users to eliminate memorization of their private data from a trained machine learning this http URL this paper, we propose the first uniform metric called for-getting rate to measure the effectiveness of a machine unlearning method. It is based on the concept of membership inference and describes the transformation rate of the eliminated data from "memorized" to "unknown" after conducting unlearning. We also propose a novel unlearning method calledForsaken. It is superior to previous work in either utility or efficiency (when achieving the same forgetting rate). We benchmark Forsaken with eight standard datasets to evaluate its performance. The experimental results show that it can achieve more than 90\% forgetting rate on average and only causeless than 5\% accuracy loss.

read more

Citations
More filters
Proceedings ArticleDOI

No Matter How You Slice It: Machine Unlearning with SISA Comes at the Expense of Minority Classes

TL;DR: In this article , the impact of SISA unlearning in settings where classes are imbalanced, as well as when class membership is correlated with unlearning likelihood, is analyzed and shown that the performance decrease associated with using SISA is primarily carried by minority classes and that conventional techniques for imbalanced datasets are unable to close this gap.
References
More filters
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Journal Article

Visualizing Data using t-SNE

TL;DR: A new technique called t-SNE that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map, a variation of Stochastic Neighbor Embedding that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map.
Proceedings ArticleDOI

XGBoost: A Scalable Tree Boosting System

TL;DR: XGBoost as discussed by the authors proposes a sparsity-aware algorithm for sparse data and weighted quantile sketch for approximate tree learning to achieve state-of-the-art results on many machine learning challenges.
Book

The Mathematical Theory of Communication

TL;DR: The Mathematical Theory of Communication (MTOC) as discussed by the authors was originally published as a paper on communication theory more than fifty years ago and has since gone through four hardcover and sixteen paperback printings.
ReportDOI

Building a large annotated corpus of English: the penn treebank

TL;DR: As a result of this grant, the researchers have now published on CDROM a corpus of over 4 million words of running text annotated with part-of- speech (POS) tags, which includes a fully hand-parsed version of the classic Brown corpus.
Related Papers (5)