# Learnability and the Vapnik-Chervonenkis dimension

TL;DR: This paper shows that the essential condition for distribution-free learnability is finiteness of the Vapnik-Chervonenkis dimension, a simple combinatorial parameter of the class of concepts to be learned.

Abstract: Valiant's learnability model is extended to learning classes of concepts defined by regions in Euclidean space En. The methods in this paper lead to a unified treatment of some of Valiant's results, along with previous results on distribution-free convergence of certain pattern recognition algorithms. It is shown that the essential condition for distribution-free learnability is finiteness of the Vapnik-Chervonenkis dimension, a simple combinatorial parameter of the class of concepts to be learned. Using this parameter, the complexity and closure properties of learnable classes are analyzed, and the necessary and sufficient conditions are provided for feasible learnability.

...read more

##### Citations

[...]

26,972 citations

^{1}

19,046 citations

5,482 citations

^{1}

4,587 citations

3,659 citations

##### References

42,654 citations

39,992 citations

17,918 citations

14,944 citations

13,634 citations