scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Learnability and the Vapnik-Chervonenkis dimension

TL;DR: This paper shows that the essential condition for distribution-free learnability is finiteness of the Vapnik-Chervonenkis dimension, a simple combinatorial parameter of the class of concepts to be learned.
Abstract: Valiant's learnability model is extended to learning classes of concepts defined by regions in Euclidean space En. The methods in this paper lead to a unified treatment of some of Valiant's results, along with previous results on distribution-free convergence of certain pattern recognition algorithms. It is shown that the essential condition for distribution-free learnability is finiteness of the Vapnik-Chervonenkis dimension, a simple combinatorial parameter of the class of concepts to be learned. Using this parameter, the complexity and closure properties of learnable classes are analyzed, and the necessary and sufficient conditions are provided for feasible learnability.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Lower bounds on the VC dimension proportional to the number of parameters for several thresholded function classes including two-layer neural networks with certain smooth activation functions and radial basis functions with a gaussian basis are obtained.
Abstract: We examine the relationship between the VC dimension and the number of parameters of a threshold smoothly parameterized function class. We show that the VC dimension of such a function class is at least k if there exists a k-dimensional differentiable manifold in the parameter space such that each member of the manifold corresponds to a different decision boundary. Using this result, we are able to obtain lower bounds on the VC dimension proportional to the number of parameters for several thresholded function classes including two-layer neural networks with certain smooth activation functions and radial basis functions with a gaussian basis. These lower bounds hold even if the magnitudes of the parameters are restricted to be arbitrarily small. In Valiant's probably approximately correct learning framework, this implies that the number of examples necessary for learning these function classes is at least linear in the number of parameters.

25 citations


Cites background from "Learnability and the Vapnik-Chervon..."

  • ...It has been shown [6] that the number of examples necessary and sufficient for PAClearning a function class is proportional to a combinatorial dimension known as the Vapnik-Chervonenkis (VC-) dimension of the function class....

    [...]

Journal ArticleDOI
TL;DR: It is shown that halfspaces in n dimensions can be PAC-learned with respect to the uniform distribution with accuracy e and confidence δ using O(1/e- (n + log 1/δ)) examples.

25 citations

Posted Content
TL;DR: This work provides the first sample complexity analysis for the standard hierarchy of deterministic combinatorial auction classes used in automated mechanism design, and provides tight sample complexity bounds on the number of samples needed to guarantee that the empirical revenue of the designed mechanism on the samples is close to its expected revenue on the underlying, unknown distribution over bidder valuations.
Abstract: The design of revenue-maximizing combinatorial auctions, i.e. multi-item auctions over bundles of goods, is one of the most fundamental problems in computational economics, unsolved even for two bidders and two items for sale. In the traditional economic models, it is assumed that the bidders' valuations are drawn from an underlying distribution and that the auction designer has perfect knowledge of this distribution. Despite this strong and oftentimes unrealistic assumption, it is remarkable that the revenue-maximizing combinatorial auction remains unknown. In recent years, automated mechanism design has emerged as one of the most practical and promising approaches to designing high-revenue combinatorial auctions. The most scalable automated mechanism design algorithms take as input samples from the bidders' valuation distribution and then search for a high-revenue auction in a rich auction class. In this work, we provide the first sample complexity analysis for the standard hierarchy of deterministic combinatorial auction classes used in automated mechanism design. In particular, we provide tight sample complexity bounds on the number of samples needed to guarantee that the empirical revenue of the designed mechanism on the samples is close to its expected revenue on the underlying, unknown distribution over bidder valuations, for each of the auction classes in the hierarchy. In addition to helping set automated mechanism design on firm foundations, our results also push the boundaries of learning theory. In particular, the hypothesis functions used in our contexts are defined through multi-stage combinatorial optimization procedures, rather than simple decision boundaries, as are common in machine learning.

25 citations

Journal ArticleDOI
01 Aug 1997
TL;DR: This article investigates algorithmic learning, in the limit, of correct programs for recursive functions, both input/output examples off and several interesting varieties of approximate additional information aboutf, which are Rose's frequency computations forf and several natural generalizations from the literature.
Abstract: This article investigates algorithmic learning, in the limit, of correct programs for recursive functionsffrom both input/output examples offand several interesting varieties ofapproximateadditional (algorithmic) information aboutf. Specifically considered, as such approximate additional information aboutf, are Rose's frequency computations forfand several natural generalizations from the literature, each generalization involving programs for restricted trees of recursive functions which havefas a branch. Considered as the types of trees are those with bounded variation, bounded width, and bounded rank. For the case of learning final correct programs for recursive functions, EX-learning, where the additional information involves frequency computations, an insightful and interestingly complex combinatorial characterization of learning power is presented as a function of the frequency parameters. For EX-learning (as well as for BC-learning, where a finalsequenceof correct programs is learned), for the cases of providing the types of additional information considered in this paper, the maximal probability is determined such that the entire class of recursive functions is learnable with that probability.

24 citations

01 Jan 2019
TL;DR: In this paper, the authors show that no strongly sublinear sized coresets exist for logistic regression, and they introduce a complexity measure, which quantifies the hardness of compressing a data set.
Abstract: Coresets are one of the central methods to facilitate the analysis of large data. We continue a recent line of research applying the theory of coresets to logistic regression. First, we show the negative result that no strongly sublinear sized coresets exist for logistic regression. To deal with intractable worst-case instances we introduce a complexity measure $\mu(X)$, which quantifies the hardness of compressing a data set for logistic regression. $\mu(X)$ has an intuitive statistical interpretation that may be of independent interest. For data sets with bounded $\mu(X)$-complexity, we show that a novel sensitivity sampling scheme produces the first provably sublinear $(1\pm\eps)$-coreset. We illustrate the performance of our method by comparing to uniform sampling as well as to state of the art methods in the area. The experiments are conducted on real world benchmark data for logistic regression.

24 citations

References
More filters
Book
01 Jan 1979
TL;DR: The second edition of a quarterly column as discussed by the authors provides a continuing update to the list of problems (NP-complete and harder) presented by M. R. Garey and myself in our book "Computers and Intractability: A Guide to the Theory of NP-Completeness,” W. H. Freeman & Co., San Francisco, 1979.
Abstract: This is the second edition of a quarterly column the purpose of which is to provide a continuing update to the list of problems (NP-complete and harder) presented by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NP-Completeness,’’ W. H. Freeman & Co., San Francisco, 1979 (hereinafter referred to as ‘‘[G&J]’’; previous columns will be referred to by their dates). A background equivalent to that provided by [G&J] is assumed. Readers having results they would like mentioned (NP-hardness, PSPACE-hardness, polynomial-time-solvability, etc.), or open problems they would like publicized, should send them to David S. Johnson, Room 2C355, Bell Laboratories, Murray Hill, NJ 07974, including details, or at least sketches, of any new proofs (full papers are preferred). In the case of unpublished results, please state explicitly that you would like the results mentioned in the column. Comments and corrections are also welcome. For more details on the nature of the column and the form of desired submissions, see the December 1981 issue of this journal.

40,020 citations

Book
01 Jan 1968
TL;DR: The arrangement of this invention provides a strong vibration free hold-down mechanism while avoiding a large pressure drop to the flow of coolant fluid.
Abstract: A fuel pin hold-down and spacing apparatus for use in nuclear reactors is disclosed. Fuel pins forming a hexagonal array are spaced apart from each other and held-down at their lower end, securely attached at two places along their length to one of a plurality of vertically disposed parallel plates arranged in horizontally spaced rows. These plates are in turn spaced apart from each other and held together by a combination of spacing and fastening means. The arrangement of this invention provides a strong vibration free hold-down mechanism while avoiding a large pressure drop to the flow of coolant fluid. This apparatus is particularly useful in connection with liquid cooled reactors such as liquid metal cooled fast breeder reactors.

17,939 citations

Book
01 Jan 1973
TL;DR: In this article, a unified, comprehensive and up-to-date treatment of both statistical and descriptive methods for pattern recognition is provided, including Bayesian decision theory, supervised and unsupervised learning, nonparametric techniques, discriminant analysis, clustering, preprosessing of pictorial data, spatial filtering, shape description techniques, perspective transformations, projective invariants, linguistic procedures, and artificial intelligence techniques for scene analysis.
Abstract: Provides a unified, comprehensive and up-to-date treatment of both statistical and descriptive methods for pattern recognition. The topics treated include Bayesian decision theory, supervised and unsupervised learning, nonparametric techniques, discriminant analysis, clustering, preprosessing of pictorial data, spatial filtering, shape description techniques, perspective transformations, projective invariants, linguistic procedures, and artificial intelligence techniques for scene analysis.

13,647 citations