scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Learnability and the Vapnik-Chervonenkis dimension

TL;DR: This paper shows that the essential condition for distribution-free learnability is finiteness of the Vapnik-Chervonenkis dimension, a simple combinatorial parameter of the class of concepts to be learned.
Abstract: Valiant's learnability model is extended to learning classes of concepts defined by regions in Euclidean space En. The methods in this paper lead to a unified treatment of some of Valiant's results, along with previous results on distribution-free convergence of certain pattern recognition algorithms. It is shown that the essential condition for distribution-free learnability is finiteness of the Vapnik-Chervonenkis dimension, a simple combinatorial parameter of the class of concepts to be learned. Using this parameter, the complexity and closure properties of learnable classes are analyzed, and the necessary and sufficient conditions are provided for feasible learnability.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Support vector machines (SVMs) are a promising machine learning method originally developed for pattern recognition problem based on structural risk minimization as discussed by the authors, which can be divided into two categories: support vector classification (SVC) machines and support vector regression (SVR) machines.

300 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the existence of a sample compression scheme of fixed-size for aclass C is sufficient to ensure that the class C is pac-learnable, and the relationship between sample compression schemes and the VC dimension is explored.
Abstract: Within the framework of pac-learning, we explore the learnability of concepts from samples using the paradigm of sample compression schemes. A sample compression scheme of size k for a concept class C ⊆ 2X consists of a compression function and a reconstruction function. The compression function receives a finite sample set consistent with some concept in C and chooses a subset of k examples as the compression set. The reconstruction function forms a hypothesis on X from a compression set of k examples. For any sample set of a concept in C the compression set produced by the compression function must lead to a hypothesis consistent with the whole original sample set when it is fed to the reconstruction function. We demonstrate that the existence of a sample compression scheme of fixed-size for a class C is sufficient to ensure that the class C is pac-learnable. Previous work has shown that a class is pac-learnable if and only if the Vapnik-Chervonenkis (VC) dimension of the class is finite. In the second half of this paper we explore the relationship between sample compression schemes and the VC dimension. We define maximum and maximal classes of VC dimension d. For every maximum class of VC dimension d, there is a sample compression scheme of size d, and for sufficiently-large maximum classes there is no sample compression scheme of size less than d. We discuss briefly classes of VC dimension d that are maximal but not maximum. It is an open question whether every class of VC dimension d has a sample compression scheme of size O(d).

296 citations

Book
28 Aug 2014
TL;DR: Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning by paring down the complexity of the disciplines involved.
Abstract: Quantum Machine Learning bridges the gap between abstract developments in quantum computing and the applied research on machine learning. Paring down the complexity of the disciplines involved, it ...

292 citations

Journal ArticleDOI
TL;DR: A series of simulations and analyses with modular neural networks are presented, suggesting a number of design principles in the form of explicit ways in which neural modules can cooperate in recognition tasks that may supplement recent accounts of the relation between structure and function in the brain.

289 citations

Proceedings Article
03 Dec 1996
TL;DR: This paper shows that if a large neural network is used for a pattern classification problem, and the learning algorithm finds a network with small weights that has small squared error on the training patterns, then the generalization performance depends on the size of the weights rather than the number of weights.
Abstract: This paper shows that if a large neural network is used for a pattern classification problem, and the learning algorithm finds a network with small weights that has small squared error on the training patterns, then the generalization performance depends on the size of the weights rather than the number of weights. More specifically, consider an l-layer feed-forward network of sigmoid units, in which the sum of the magnitudes of the weights associated with each unit is bounded by A. The misclassification probability converges to an error estimate (that is closely related to squared error on the training set) at rate O((cA)l(l+1)/2 √(log n)/m) ignoring log factors, where m is the number of training patterns, n is the input dimension, and c is a constant. This may explain the generalization performance of neural networks, particularly when the number of training examples is considerably smaller than the number of weights. It also supports heuristics (such as weight decay and early stopping) that attempt to keep the weights small during training.

279 citations

References
More filters
Book
01 Jan 1979
TL;DR: The second edition of a quarterly column as discussed by the authors provides a continuing update to the list of problems (NP-complete and harder) presented by M. R. Garey and myself in our book "Computers and Intractability: A Guide to the Theory of NP-Completeness,” W. H. Freeman & Co., San Francisco, 1979.
Abstract: This is the second edition of a quarterly column the purpose of which is to provide a continuing update to the list of problems (NP-complete and harder) presented by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NP-Completeness,’’ W. H. Freeman & Co., San Francisco, 1979 (hereinafter referred to as ‘‘[G&J]’’; previous columns will be referred to by their dates). A background equivalent to that provided by [G&J] is assumed. Readers having results they would like mentioned (NP-hardness, PSPACE-hardness, polynomial-time-solvability, etc.), or open problems they would like publicized, should send them to David S. Johnson, Room 2C355, Bell Laboratories, Murray Hill, NJ 07974, including details, or at least sketches, of any new proofs (full papers are preferred). In the case of unpublished results, please state explicitly that you would like the results mentioned in the column. Comments and corrections are also welcome. For more details on the nature of the column and the form of desired submissions, see the December 1981 issue of this journal.

40,020 citations

Book
01 Jan 1968
TL;DR: The arrangement of this invention provides a strong vibration free hold-down mechanism while avoiding a large pressure drop to the flow of coolant fluid.
Abstract: A fuel pin hold-down and spacing apparatus for use in nuclear reactors is disclosed. Fuel pins forming a hexagonal array are spaced apart from each other and held-down at their lower end, securely attached at two places along their length to one of a plurality of vertically disposed parallel plates arranged in horizontally spaced rows. These plates are in turn spaced apart from each other and held together by a combination of spacing and fastening means. The arrangement of this invention provides a strong vibration free hold-down mechanism while avoiding a large pressure drop to the flow of coolant fluid. This apparatus is particularly useful in connection with liquid cooled reactors such as liquid metal cooled fast breeder reactors.

17,939 citations

Book
01 Jan 1973
TL;DR: In this article, a unified, comprehensive and up-to-date treatment of both statistical and descriptive methods for pattern recognition is provided, including Bayesian decision theory, supervised and unsupervised learning, nonparametric techniques, discriminant analysis, clustering, preprosessing of pictorial data, spatial filtering, shape description techniques, perspective transformations, projective invariants, linguistic procedures, and artificial intelligence techniques for scene analysis.
Abstract: Provides a unified, comprehensive and up-to-date treatment of both statistical and descriptive methods for pattern recognition. The topics treated include Bayesian decision theory, supervised and unsupervised learning, nonparametric techniques, discriminant analysis, clustering, preprosessing of pictorial data, spatial filtering, shape description techniques, perspective transformations, projective invariants, linguistic procedures, and artificial intelligence techniques for scene analysis.

13,647 citations