scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Learnability and the Vapnik-Chervonenkis dimension

TL;DR: This paper shows that the essential condition for distribution-free learnability is finiteness of the Vapnik-Chervonenkis dimension, a simple combinatorial parameter of the class of concepts to be learned.
Abstract: Valiant's learnability model is extended to learning classes of concepts defined by regions in Euclidean space En. The methods in this paper lead to a unified treatment of some of Valiant's results, along with previous results on distribution-free convergence of certain pattern recognition algorithms. It is shown that the essential condition for distribution-free learnability is finiteness of the Vapnik-Chervonenkis dimension, a simple combinatorial parameter of the class of concepts to be learned. Using this parameter, the complexity and closure properties of learnable classes are analyzed, and the necessary and sufficient conditions are provided for feasible learnability.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A general framework whereby the notion of identifiability is given a precise formal definition similar to that of learnability is proposed, and if a tractable procedure exists for deciding whether a given relation is decomposable into a constraint network or a CNF theory with desirable topology is explored.

126 citations

Journal ArticleDOI
E. B. Baum1
TL;DR: It is proved that no such approach to evading the CAP can work, and a new, fast algorithm is given for learning unions of half spaces in fixed dimension, suggesting a generalization of this approach which naively would avoid a credit assignment problem and learn in time polynomial in dimension.

126 citations

Journal ArticleDOI
TL;DR: This work examines several private learning tasks and gives tight bounds on their sample complexity, and shows strong separations between sample complexities of proper and improper private learners (such separation does not exist for non-private learners), and between sample complexity of efficient and inefficient proper private learners.
Abstract: Learning is a task that generalizes many of the analyses that are applied to collections of data, in particular, to collections of sensitive individual information. Hence, it is natural to ask what can be learned while preserving individual privacy. Kasiviswanathan et al. (in SIAM J. Comput., 40(3):793---826, 2011) initiated such a discussion. They formalized the notion of private learning, as a combination of PAC learning and differential privacy, and investigated what concept classes can be learned privately. Somewhat surprisingly, they showed that for finite, discrete domains (ignoring time complexity), every PAC learning task could be performed privately with polynomially many labeled examples; in many natural cases this could even be done in polynomial time. While these results seem to equate non-private and private learning, there is still a significant gap: the sample complexity of (non-private) PAC learning is crisply characterized in terms of the VC-dimension of the concept class, whereas this relationship is lost in the constructions of private learners, which exhibit, generally, a higher sample complexity. Looking into this gap, we examine several private learning tasks and give tight bounds on their sample complexity. In particular, we show strong separations between sample complexities of proper and improper private learners (such separation does not exist for non-private learners), and between sample complexities of efficient and inefficient proper private learners. Our results show that VC-dimension is not the right measure for characterizing the sample complexity of proper private learning. We also examine the task of private data release (as initiated by Blum et al. in STOC, pp. 609---618, 2008), and give new lower bounds on the sample complexity. Our results show that the logarithmic dependence on size of the instance space is essential for private data release.

126 citations

Journal ArticleDOI
TL;DR: It is proved that f1(ɛ)=max(2, ⌌ 1/ɛ ⌍−1), and similar bounds are established for some special classes of range spaces of Vapnik-Chervonenkis dimension three.
Abstract: Given any natural numberd, 0

123 citations

Book ChapterDOI
09 Feb 2010
TL;DR: This work examines several private learning tasks and gives tight bounds on their sample complexity, and shows strong separations between sample complexities of proper and improper private learners (such separation does not exist for non-private learners), and between sample complications of efficient and inefficient proper private learners.
Abstract: Learning is a task that generalizes many of the analyses that are applied to collections of data, and in particular, collections of sensitive individual information. Hence, it is natural to ask what can be learned while preserving individual privacy. [Kasiviswanathan, Lee, Nissim, Raskhodnikova, and Smith; FOCS 2008] initiated such a discussion. They formalized the notion of private learning, as a combination of PAC learning and differential privacy, and investigated what concept classes can be learned privately. Somewhat surprisingly, they showed that, ignoring time complexity, every PAC learning task could be performed privately with polynomially many samples, and in many natural cases this could even be done in polynomial time. While these results seem to equate non-private and private learning, there is still a significant gap: the sample complexity of (non-private) PAC learning is crisply characterized in terms of the VC-dimension of the concept class, whereas this relationship is lost in the constructions of private learners, which exhibit, generally, a higher sample complexity. Looking into this gap, we examine several private learning tasks and give tight bounds on their sample complexity. In particular, we show strong separations between sample complexities of proper and improper private learners (such separation does not exist for non-private learners), and between sample complexities of efficient and inefficient proper private learners. Our results show that VC-dimension is not the right measure for characterizing the sample complexity of proper private learning. We also examine the task of private data release (as initiated by [Blum, Ligett, and Roth; STOC 2008]), and give new lower bounds on the sample complexity. Our results show that the logarithmic dependence on size of the instance space is essential for private data release.

122 citations


Cites background or methods from "Learnability and the Vapnik-Chervon..."

  • ...class that fi-represents Cd. For comparison, the number of labeled examples required for learning Cd non-privately is proportional to the VC-dimension of Cd [ 5 , 9]....

    [...]

  • ...In particular, the well-known relationship between the sampling complexity of PAC learners and the VC-dimension of the concept class (ignoring computational e‐ciency) [ 5 ] does not hold for the above constructions of private learners { as their sample complexity is proportional to the logarithm of the size of the concept class....

    [...]

  • ...It is well known that a standard (non-private) proper learner uses approximately VC-dimension number of labeled examples to learn a concept class [ 5 ]....

    [...]

References
More filters
Book
01 Jan 1979
TL;DR: The second edition of a quarterly column as discussed by the authors provides a continuing update to the list of problems (NP-complete and harder) presented by M. R. Garey and myself in our book "Computers and Intractability: A Guide to the Theory of NP-Completeness,” W. H. Freeman & Co., San Francisco, 1979.
Abstract: This is the second edition of a quarterly column the purpose of which is to provide a continuing update to the list of problems (NP-complete and harder) presented by M. R. Garey and myself in our book ‘‘Computers and Intractability: A Guide to the Theory of NP-Completeness,’’ W. H. Freeman & Co., San Francisco, 1979 (hereinafter referred to as ‘‘[G&J]’’; previous columns will be referred to by their dates). A background equivalent to that provided by [G&J] is assumed. Readers having results they would like mentioned (NP-hardness, PSPACE-hardness, polynomial-time-solvability, etc.), or open problems they would like publicized, should send them to David S. Johnson, Room 2C355, Bell Laboratories, Murray Hill, NJ 07974, including details, or at least sketches, of any new proofs (full papers are preferred). In the case of unpublished results, please state explicitly that you would like the results mentioned in the column. Comments and corrections are also welcome. For more details on the nature of the column and the form of desired submissions, see the December 1981 issue of this journal.

40,020 citations

Book
01 Jan 1968
TL;DR: The arrangement of this invention provides a strong vibration free hold-down mechanism while avoiding a large pressure drop to the flow of coolant fluid.
Abstract: A fuel pin hold-down and spacing apparatus for use in nuclear reactors is disclosed. Fuel pins forming a hexagonal array are spaced apart from each other and held-down at their lower end, securely attached at two places along their length to one of a plurality of vertically disposed parallel plates arranged in horizontally spaced rows. These plates are in turn spaced apart from each other and held together by a combination of spacing and fastening means. The arrangement of this invention provides a strong vibration free hold-down mechanism while avoiding a large pressure drop to the flow of coolant fluid. This apparatus is particularly useful in connection with liquid cooled reactors such as liquid metal cooled fast breeder reactors.

17,939 citations

Book
01 Jan 1973
TL;DR: In this article, a unified, comprehensive and up-to-date treatment of both statistical and descriptive methods for pattern recognition is provided, including Bayesian decision theory, supervised and unsupervised learning, nonparametric techniques, discriminant analysis, clustering, preprosessing of pictorial data, spatial filtering, shape description techniques, perspective transformations, projective invariants, linguistic procedures, and artificial intelligence techniques for scene analysis.
Abstract: Provides a unified, comprehensive and up-to-date treatment of both statistical and descriptive methods for pattern recognition. The topics treated include Bayesian decision theory, supervised and unsupervised learning, nonparametric techniques, discriminant analysis, clustering, preprosessing of pictorial data, spatial filtering, shape description techniques, perspective transformations, projective invariants, linguistic procedures, and artificial intelligence techniques for scene analysis.

13,647 citations