scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Learning Spatio-Temporal Representation with Pseudo-3D Residual Networks

01 Oct 2017-pp 5534-5542
TL;DR: This paper devise multiple variants of bottleneck building blocks in a residual learning framework by simulating 3 x3 x 3 convolutions with 1 × 3 × 3 convolutional filters on spatial domain (equivalent to 2D CNN) plus 3 × 1 × 1 convolutions to construct temporal connections on adjacent feature maps in time.
Abstract: Convolutional Neural Networks (CNN) have been regarded as a powerful class of models for image recognition problems. Nevertheless, it is not trivial when utilizing a CNN for learning spatio-temporal video representation. A few studies have shown that performing 3D convolutions is a rewarding approach to capture both spatial and temporal dimensions in videos. However, the development of a very deep 3D CNN from scratch results in expensive computational cost and memory demand. A valid question is why not recycle off-the-shelf 2D networks for a 3D CNN. In this paper, we devise multiple variants of bottleneck building blocks in a residual learning framework by simulating 3 x 3 x 3 convolutions with 1 × 3 × 3 convolutional filters on spatial domain (equivalent to 2D CNN) plus 3 × 1 × 1 convolutions to construct temporal connections on adjacent feature maps in time. Furthermore, we propose a new architecture, named Pseudo-3D Residual Net (P3D ResNet), that exploits all the variants of blocks but composes each in different placement of ResNet, following the philosophy that enhancing structural diversity with going deep could improve the power of neural networks. Our P3D ResNet achieves clear improvements on Sports-1M video classification dataset against 3D CNN and frame-based 2D CNN by 5.3% and 1.8%, respectively. We further examine the generalization performance of video representation produced by our pre-trained P3D ResNet on five different benchmarks and three different tasks, demonstrating superior performances over several state-of-the-art techniques.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings ArticleDOI
12 Apr 2018
TL;DR: In this article, a new spatio-temporal convolutional block "R(2+1)D" was proposed, which achieved state-of-the-art performance on Sports-1M, Kinetics, UCF101, and HMDB51.
Abstract: In this paper we discuss several forms of spatiotemporal convolutions for video analysis and study their effects on action recognition. Our motivation stems from the observation that 2D CNNs applied to individual frames of the video have remained solid performers in action recognition. In this work we empirically demonstrate the accuracy advantages of 3D CNNs over 2D CNNs within the framework of residual learning. Furthermore, we show that factorizing the 3D convolutional filters into separate spatial and temporal components yields significantly gains in accuracy. Our empirical study leads to the design of a new spatiotemporal convolutional block "R(2+1)D" which produces CNNs that achieve results comparable or superior to the state-of-the-art on Sports-1M, Kinetics, UCF101, and HMDB51.

1,827 citations

Proceedings ArticleDOI
18 Jun 2018
TL;DR: Whether current video datasets have sufficient data for training very deep convolutional neural networks with spatio-temporal three-dimensional (3D) kernels is determined and it is believed that using deep 3D CNNs together with Kinetics will retrace the successful history of 2DCNNs and ImageNet, and stimulate advances in computer vision for videos.
Abstract: The purpose of this study is to determine whether current video datasets have sufficient data for training very deep convolutional neural networks (CNNs) with spatio-temporal three-dimensional (3D) kernels. Recently, the performance levels of 3D CNNs in the field of action recognition have improved significantly. However, to date, conventional research has only explored relatively shallow 3D architectures. We examine the architectures of various 3D CNNs from relatively shallow to very deep ones on current video datasets. Based on the results of those experiments, the following conclusions could be obtained: (i) ResNet-18 training resulted in significant overfitting for UCF-101, HMDB-51, and ActivityNet but not for Kinetics. (ii) The Kinetics dataset has sufficient data for training of deep 3D CNNs, and enables training of up to 152 ResNets layers, interestingly similar to 2D ResNets on ImageNet. ResNeXt-101 achieved 78.4% average accuracy on the Kinetics test set. (iii) Kinetics pretrained simple 3D architectures outperforms complex 2D architectures, and the pretrained ResNeXt-101 achieved 94.5% and 70.2% on UCF-101 and HMDB-51, respectively. The use of 2D CNNs trained on ImageNet has produced significant progress in various tasks in image. We believe that using deep 3D CNNs together with Kinetics will retrace the successful history of 2D CNNs and ImageNet, and stimulate advances in computer vision for videos. The codes and pretrained models used in this study are publicly available1.

1,769 citations


Cites result from "Learning Spatio-Temporal Representa..."

  • ...Here, we can see that ResNeXt-101 achieved higher accuracies compared with C3D [23], P3D [19], two-stream CNN [20], and TDD [27]....

    [...]

  • ...Here, we can see that ResNeXt101 achieved higher accuracies compared with C3D [23], P3D [19], two-stream CNN [20], and TDD [27]....

    [...]

Book ChapterDOI
Saining Xie1, Chen Sun1, Jonathan Huang1, Zhuowen Tu1, Kevin Murphy1 
08 Sep 2018
TL;DR: In this article, it was shown that it is possible to replace many of the expensive 3D convolutions by low-cost 2D convolution, and the best result was achieved when replacing the 3D CNNs at the bottom of the network, suggesting that temporal representation learning on high-level semantic features is more useful.
Abstract: Despite the steady progress in video analysis led by the adoption of convolutional neural networks (CNNs), the relative improvement has been less drastic as that in 2D static image classification Three main challenges exist including spatial (image) feature representation, temporal information representation, and model/computation complexity It was recently shown by Carreira and Zisserman that 3D CNNs, inflated from 2D networks and pretrained on ImageNet, could be a promising way for spatial and temporal representation learning However, as for model/computation complexity, 3D CNNs are much more expensive than 2D CNNs and prone to overfit We seek a balance between speed and accuracy by building an effective and efficient video classification system through systematic exploration of critical network design choices In particular, we show that it is possible to replace many of the 3D convolutions by low-cost 2D convolutions Rather surprisingly, best result (in both speed and accuracy) is achieved when replacing the 3D convolutions at the bottom of the network, suggesting that temporal representation learning on high-level “semantic” features is more useful Our conclusion generalizes to datasets with very different properties When combined with several other cost-effective designs including separable spatial/temporal convolution and feature gating, our system results in an effective video classification system that that produces very competitive results on several action classification benchmarks (Kinetics, Something-something, UCF101 and HMDB), as well as two action detection (localization) benchmarks (JHMDB and UCF101-24)

809 citations

Book ChapterDOI
08 Sep 2018
TL;DR: The proposed graph representation achieves state-of-the-art results on the Charades and Something-Something datasets and obtains a huge gain when the model is applied in complex environments.
Abstract: How do humans recognize the action “opening a book”? We argue that there are two important cues: modeling temporal shape dynamics and modeling functional relationships between humans and objects. In this paper, we propose to represent videos as space-time region graphs which capture these two important cues. Our graph nodes are defined by the object region proposals from different frames in a long range video. These nodes are connected by two types of relations: (i) similarity relations capturing the long range dependencies between correlated objects and (ii) spatial-temporal relations capturing the interactions between nearby objects. We perform reasoning on this graph representation via Graph Convolutional Networks. We achieve state-of-the-art results on the Charades and Something-Something datasets. Especially for Charades with complex environments, we obtain a huge \(4.4\%\) gain when our model is applied in complex environments.

763 citations


Cites methods from "Learning Spatio-Temporal Representa..."

  • ...One of the most popular model is the two-Stream ConvNets [1] where temporal information is model by a network with 10 optical flow frames as inputs ( 1 second)....

    [...]

  • ...To better model longer-term information, a lot of work has been focused on using Recurrent Neural Networks (RNNs) [3,4,38,39,40,5,41,42,43] and 3D ConvNets [44,45,8,9,46,47,48]....

    [...]

  • ...For example, the state-of-the-art approaches based on twostream ConvNets [1,2] are still learning to classify actions based on individual video frame or local motion vectors....

    [...]

  • ...In the context of deep learning, especially for semantic segmentation, the CRF model is often applied on the outputs of the ConvNets by performing mean-field inference [61,62,63,64,65,66]....

    [...]

  • ...In this section, we will first introduce the feature extraction process for our model with 3D ConvNets and then describe the construction of the similarity graph as well as the spatial-temporal graph....

    [...]

Proceedings ArticleDOI
15 Jun 2019
TL;DR: A novel directed graph neural network is designed specially to extract the information of joints, bones and their relations and make prediction based on the extracted features and is tested on two large-scale datasets, NTU-RGBD and Skeleton-Kinetics, and exceeds state-of-the-art performance on both of them.
Abstract: The skeleton data have been widely used for the action recognition tasks since they can robustly accommodate dynamic circumstances and complex backgrounds. In existing methods, both the joint and bone information in skeleton data have been proved to be of great help for action recognition tasks. However, how to incorporate these two types of data to best take advantage of the relationship between joints and bones remains a problem to be solved. In this work, we represent the skeleton data as a directed acyclic graph based on the kinematic dependency between the joints and bones in the natural human body. A novel directed graph neural network is designed specially to extract the information of joints, bones and their relations and make prediction based on the extracted features. In addition, to better fit the action recognition task, the topological structure of the graph is made adaptive based on the training process, which brings notable improvement. Moreover, the motion information of the skeleton sequence is exploited and combined with the spatial information to further enhance the performance in a two-stream framework. Our final model is tested on two large-scale datasets, NTU-RGBD and Skeleton-Kinetics, and exceeds state-of-the-art performance on both of them.

634 citations


Cites methods from "Learning Spatio-Temporal Representa..."

  • ...The most widely used models in deep-learning-based methods are recurrent neural networks (RNNs), convolutional neural networks (CNNs) and graph convolutional networks (GCNs), where the coordinates of joints are represented as vector sequences, pseudo-images and graphs, respectively....

    [...]

  • ...By decoupling the spatial and temporal dimensions, the pseudo-3D CNN can model the spatiotemporal information in a more economic and effective way....

    [...]

  • ...The pseudo-3D CNN [23] has shown its superiority in the RGB-based action recognition field, which models the spatial information with the 2D convolutions and then models the temporal information with the 1D convolutions....

    [...]

  • ...Conventional methods always model the skeleton data as a sequence of vectors or a pseudo-image to be processed by RNNs or CNNs....

    [...]

  • ...Graph is a more general data structure than image and sequence, which cannot be directly modeled by conventional deep learning modules such as CNNs and RNNs. Approaches for operating directly on graphs and solving graph-based problems have been explored extensively for several years [15, 9, 33, 24, 1, 11, 2]....

    [...]

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Proceedings ArticleDOI
07 Jun 2015
TL;DR: Inception as mentioned in this paper is a deep convolutional neural network architecture that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14).
Abstract: We propose a deep convolutional neural network architecture codenamed Inception that achieves the new state of the art for classification and detection in the ImageNet Large-Scale Visual Recognition Challenge 2014 (ILSVRC14). The main hallmark of this architecture is the improved utilization of the computing resources inside the network. By a carefully crafted design, we increased the depth and width of the network while keeping the computational budget constant. To optimize quality, the architectural decisions were based on the Hebbian principle and the intuition of multi-scale processing. One particular incarnation used in our submission for ILSVRC14 is called GoogLeNet, a 22 layers deep network, the quality of which is assessed in the context of classification and detection.

40,257 citations

Journal Article
TL;DR: A new technique called t-SNE that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map, a variation of Stochastic Neighbor Embedding that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map.
Abstract: We present a new technique called “t-SNE” that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much easier to optimize, and produces significantly better visualizations by reducing the tendency to crowd points together in the center of the map. t-SNE is better than existing techniques at creating a single map that reveals structure at many different scales. This is particularly important for high-dimensional data that lie on several different, but related, low-dimensional manifolds, such as images of objects from multiple classes seen from multiple viewpoints. For visualizing the structure of very large datasets, we show how t-SNE can use random walks on neighborhood graphs to allow the implicit structure of all of the data to influence the way in which a subset of the data is displayed. We illustrate the performance of t-SNE on a wide variety of datasets and compare it with many other non-parametric visualization techniques, including Sammon mapping, Isomap, and Locally Linear Embedding. The visualizations produced by t-SNE are significantly better than those produced by the other techniques on almost all of the datasets.

30,124 citations


"Learning Spatio-Temporal Representa..." refers methods in this paper

  • ...Video representation embedding visualizations of ResNet-152 and P3D ResNet on UCF101 using t-SNE [32]....

    [...]

  • ...Figure 7 further shows the t-SNE [32] visualization of embedding of video representation learnt by ResNet-152 and P3D ResNet....

    [...]