scispace - formally typeset
Open AccessJournal ArticleDOI

Learning to Predict by the Methods of Temporal Differences

Richard S. Sutton
- 01 Aug 1988 - 
- Vol. 3, Iss: 1, pp 9-44
Reads0
Chats0
TLDR
This article introduces a class of incremental learning procedures specialized for prediction – that is, for using past experience with an incompletely known system to predict its future behavior – and proves their convergence and optimality for special cases and relation to supervised-learning methods.
Abstract
This article introduces a class of incremental learning procedures specialized for prediction – that is, for using past experience with an incompletely known system to predict its future behavior. Whereas conventional prediction-learning methods assign credit by means of the difference between predicted and actual outcomes, the new methods assign credit by means of the difference between temporally successive predictions. Although such temporal-difference methods have been used in Samuel's checker player, Holland's bucket brigade, and the author's Adaptive Heuristic Critic, they have remained poorly understood. Here we prove their convergence and optimality for special cases and relate them to supervised-learning methods. For most real-world prediction problems, temporal-difference methods require less memory and less peak computation than conventional methods and they produce more accurate predictions. We argue that most problems to which supervised learning is currently applied are really prediction problems of the sort to which temporal-difference methods can be applied to advantage.

read more

Content maybe subject to copyright    Report

Citations
More filters
Book

Reinforcement Learning: An Introduction

TL;DR: This book provides a clear and simple account of the key ideas and algorithms of reinforcement learning, which ranges from the history of the field's intellectual foundations to the most recent developments and applications.
Journal ArticleDOI

Mastering the game of Go with deep neural networks and tree search

TL;DR: Using this search algorithm, the program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go champion by 5 games to 0.5, the first time that a computer program has defeated a human professional player in the full-sized game of Go.
Journal ArticleDOI

Simple Statistical Gradient-Following Algorithms for Connectionist Reinforcement Learning

TL;DR: This article presents a general class of associative reinforcement learning algorithms for connectionist networks containing stochastic units that are shown to make weight adjustments in a direction that lies along the gradient of expected reinforcement in both immediate-reinforcement tasks and certain limited forms of delayed-reInforcement tasks, and they do this without explicitly computing gradient estimates.
Journal ArticleDOI

Mastering the game of Go without human knowledge

TL;DR: An algorithm based solely on reinforcement learning is introduced, without human data, guidance or domain knowledge beyond game rules, that achieves superhuman performance, winning 100–0 against the previously published, champion-defeating AlphaGo.
Journal ArticleDOI

Reinforcement learning: a survey

TL;DR: Central issues of reinforcement learning are discussed, including trading off exploration and exploitation, establishing the foundations of the field via Markov decision theory, learning from delayed reinforcement, constructing empirical models to accelerate learning, making use of generalization and hierarchy, and coping with hidden state.
References
More filters
Book ChapterDOI

Learning internal representations by error propagation

TL;DR: This chapter contains sections titled: The Problem, The Generalized Delta Rule, Simulation Results, Some Further Generalizations, Conclusion.
Book

Dynamic Programming

TL;DR: The more the authors study the information processing aspects of the mind, the more perplexed and impressed they become, and it will be a very long time before they understand these processes sufficiently to reproduce them.
Book

Learning internal representations by error propagation

TL;DR: In this paper, the problem of the generalized delta rule is discussed and the Generalized Delta Rule is applied to the simulation results of simulation results in terms of the generalized delta rule.
Book

Adaptive Signal Processing

TL;DR: This chapter discusses Adaptive Arrays and Adaptive Beamforming, as well as other Adaptive Algorithms and Structures, and discusses the Z-Transform in Adaptive Signal Processing.
Related Papers (5)